

Plant Archives

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.159

RNA INTERFERENCE: RECENT ADVANCES, APPLICATIONS, AND FUTURE PROSPECTS IN CROP IMPROVEMENT

Ved Prakash Yadav

College of Agriculture, Lalsot (Dausa), Shri Karan Narendra Agriculture University, Jobner (Jaipur), Rajasthan, India. E-mail: yadavbreeding@gmail.com

(Date of Receiving-27-06-2025; Date of Acceptance-07-09-2025)

The mechanism of gene silencing by RNA interference (RNAi) is one of the most ancient and evolutionarily conserved pathways, present across all kingdoms of life. It likely originated during the early stages of molecular evolution, in the 'RNA world'—a period when RNA functioned both as genetic material and as a catalyst for enzymatic reactions. In this review, we provide a detailed explanation of the RNAi mechanism, with a particular focus on its application in plant-integrated pest management. RNAi-mediated gene silencing holds vast potential, especially in the management of plant diseases, offering a promising avenue for improving crop yields.

ABSTRACT

With the exponential growth of the global population and the increasing challenges posed by climate change and environmental stressors, there is an urgent need for high-yielding, resilient crop varieties. The recent advancements in our understanding of RNAi and its molecular mechanisms have transformed our approach to RNA-mediated gene regulation. RNAi is now widely used as a research tool to modulate gene expression across various model organisms, including *Arabidopsis*, tobacco, wheat, maize, *Drosophila*, and mice etc.

Beyond gene silencing, RNAi also plays critical roles in regulating developmental genes and in epigenetic modifications, such as DNA and chromatin remodelling through methylation. This review highlights the promising applications of RNAi as compare to CRIPER technology in plant pest & disease control and crop productivity enhancement, and discusses its future potential in sustainable agriculture.

Key words: RNAi, dsRNA uptake mechanism, Drosha, Argonaute, RISC, post-transcriptional cgene silencing, RNAi-based insecticides, SmartStax Pro, Plant-Incorporated Protectant (PIP).

Introduction

The RNAi or co-suppression method is a very ancient, ubiquitous and natural antiviral process and existed even before the deviation of plants and animals. During the origin and evolution of Earth some four billion years ago, RNA may be the first genetic material and involved in several enzyme catalysed reactions (Gilbert, 1986; Hannon, 2003; Mao *et al.*, 2007; Kumar *et al.*, 2012). The process of RNAi is a highly regulated, enzymatic mechanism of gene silencing in response to foreign nucleic acids and provides resilience individually to endogenous parasites along with exogenous pathogenic nucleic acids. They are involved in a variety of processes, *viz.*, control and expression of transposable elements,

repetitive sequences, genomic information, gene function, regulation of RNA, post-transcriptional gene silencing (PTGS), protein expression and therapeutic interventions in plant pest control thus used as a tool for high crop yield (Artymovich, 2009). Therefore, RNAi has considerable potential for insect and other pest & disease control. This natural mechanism of gene silencing can be utilised in a variety of ways, *viz.*, silencing of disease causing and yield reducing insect and pest genes in plants (Joga *et al.*, 2016; Mamta and Rajam, 2017), thus improved plant varieties can be generated to feed the rising world population. As the world population is rising exponentially and will be nine billion by the end of 2050. Furthermore, climate changes, *viz.*, abiotic and biotic stresses, along

with global warming and unpredictable natural calamities impose a great threat on both subsistence and marketable plant crops (Brodersen and Voinnet, 2006; Duan et al., 2012; Joga et al., 2016). Additionally, the RNAi technology is a proven, invaluable tool and can be harnessed to functionally validate the novel plant genes responsible for stress and disease resistance (Eschen-Lippold et al., 2012; Niu et al., 2018). The technology of RNAi mediated gene suppression has been extensively utilized to control agriculturally important insect pests. Several RNAi mediated insecticides have been generated successfully in past such as against Bemisia tabaci's AChE and EcR genes in Tobacco (Malik et al., 2016), Helicoverpa armigera's Chitinase gene in Tobacco and Tomato (Mamta et al., 2016), Helicoverpa armigera's Arginine Kinase gene in Arabidopsis thaliana (Liu et al., 2015), Helicoverpa armigera's Chitin synthase, Cytochrome P450 monooxygenase and V-ATPase in Tobacco (Jin et al., 2015), Myzus persicae's hunchback gene in Tobacco (Mao and Zeng, 2014), Nilaparvata Lugen's O-Hydroxyacedysone gene in Rice (Yu et al., 2014), etc. In spite of having done a lot of research in RNAi mediated insecticides, wide range of challenges still need to be addressed particularly at field level. For successful adoption of RNAi in pests control the first most challenge that needs to be addressed is protection of ingested dsRNA chemical hydrolysis (from nucleases) which initiates the entire RNAi process. For instance, when polygalacturonase dsRNA showed immediate down regulation upon in ingestion in the midgut, this might be due to the nucleases present in saliva (Bolognesi et al., 2012; Allen and Walker, 2012; Garbutt et al., 2013). The second challenge that needs to be addressed is the quantity and the optimal dose of the dsRNA molecule, which is influenced by a variety of internal and external factors, viz., insect species, its developmental stage, way of dsRNA delivery, rate of transcription of the target gene, length of the dsRNA molecule, and efficiency of dsRNA to spread inside host, etc (Xu et al., 2016; Miller et al., 2008; Araujo et al., 2006; Baum et al., 2007; Shakesby et al., 2009). It was found nitropin-2 RNAi efficacy is more in young insect at second instar larva stage due to physiological and genetic factors (Kumar et al., 2012). Likewise, RNAi induced silencing effect in Helicoverpa armigera showed that both long and short dsRNA was equally effective against target gene or pest (Saleh et al., 2006; Attardo et al., 2012).

RNAi:- RNAi is a natural gene regulation mechanism in eukaryotes. It involves sequence-specific recognition of mRNAs and then repressing their expression either by ribonuclease-directed degradation

or by preventing their translation. RNA silencing is a novel gene regulatory mechanism that limits the transcript level by either suppressing transcription (TGS) or by activating a sequence- Specific RNA degradation process [PTGS/ RNA interference (RNAi)] (Agrawal et al., 2003). The silencing effect was first observed in plants in 1990, when the Jorgensen laboratory introduced exogenous transgenes into petunias in an attempt to up-regulate the activity of a gene for chalcone synthase, an enzyme involved in the production of specific pigments (Agrawal et al., 2003; Napoli et al., 1990). Unexpectedly, flower pigmentation did not deepen, but rather showed variegation with complete loss of colour in some cases. Two types of small single-stranded RNAs (≈21–24 nucleotides) are key players in the two main RNAi pathways in plants; these are the siRNAs and miRNAs. miRNAs are encoded by the plant genome and mostly function as regulators of gene expression; siRNAs may also be derived from the genome, but plants have evolved to have an RNA surveillance system that recognizes and degrades specific RNAs, resulting in the generation of siRNAs. In plants this RNA surveillance system is also a robust antiviral defence mechanism. The siRNA pathway in plants begins with recognition of RNAs for degradation. These RNAs are often dsRNAs or highly structured RNAs; they are recognized in the cell cytoplasm and cleaved by ribonuclease activity of Dicer-like proteins (DCLs). Different plants can contain different DCLs (Muhammad et al., 2019); for example, Arabidopsis thaliana has four DCLs (DCL 1, 2, 3 and 4) (Gasciolli et al., 2005), which cleave ds RNAs or the structured RNAs into small RNA duplexes (typically 21, 22, 23 or 24 nucleotides). The RNAi response is maintained by the DCL generated small RNA duplexes, which is part of the RNA-induced silencing complex (RISC). One strand of the small RNA duplex is released (the passenger strand) and mostly degraded; the other is retained by RISC, serves as a guide RNA. When the RISC, carrying the guide RNA, encounters an RNA that is homologous to the guide RNA (by Watson-Crick base pairing), directs ribonuclease cleavage which results in degradation of the bound RNA. Furthermore, in plants, endogenous and virus-encoded RNA-dependent RNA polymerases can amplify the RNAi response (Muhammad et al., 2019; Baulcombe et al., 2019; Dalmay et al., 2000). Thus, the siRNAi activity is highly specific and robust. The majority of plant miRNAs originate from specific noncoding RNAs, also called primary microRNAs (pri-miRNAs), which fold into specific structures.

Short-Interfering RNAs (siRNAs):- Long dsRNA or short-hairpin RNA (shRNA) precursors, which are

homologous in sequence to the target gene to be silenced (Fire et al., 1998; Tuschl, 2001), initiate the process of RNAi. The entry of a virus, a genetic element like transposons or an introduced transgene provide long dsRNA can triggers the RNAi pathway. The dicer enzyme is recruited in the cell (Bernstein et al., 2001) leading to the cleavage of the dsRNA into siRNA (Hamilton and Baulcombe, 1999) that are short, 5 phosphorylated dsRNAs (21-25 nt) with two nucleotide overhangs at the 3'ends (Bernstein et al., 2001; Elbashir et al., 2001). The recruitment of siRNA-induced silencing complex (siRISC) leads to degradation of sense strand of siRNA (having the same sequence as the target gene) The siRISC is then incorporated into the antisense strand of siRNA which in association with AGO and other effector proteins brings about cleavage of the target mRNA in sequencespecific manner. The activated RISC can repeatedly participate in mRNA degradation and protein synthesis inhibition resulting into PTGS. On the basis of origin and mechanism of biogenesis, sRNAs in plants exhibit a range of size classes, predominantly from 20 to 24 nt. Four Dicer-like nucleases (DCLs) have been reported in Arabidopsis (Henderson et al., 2006). Depending on their origin and structure, dsRNA triggers of RNAi are cleaved by one or more DCLs (Zamore et al., 2000; Bernstein et al., 2001). DCL4 and DCL2 are involved in processing of dsRNA with perfectly complementary to produce 20- to 22-nt long shortinterfering RNA (Hamilton and Baulcombe, 1999; Hamilton et al., 2002; Hannon, 2002; Tang et al., 2003; Bouche et al., 2006). MiRNAs that are 21-nt long are produced by cleaving of partially paired dsRNA precursors by DCL1 (Denli and Hannon, 2003; Bartel, 2004). DCL3 is involved in biogenesis of 24-nt long repeat-associated sRNAs known as heterochromatic siRNAs (hc siRNAs; Xie et al., 2005). In a complex called RISC, siRNAs and miRNAs (20- to 21-nt long) in association with AGO proteins, direct sequence-specific cleavage of complementary target RNAs or interfere with their translation (Hammond et al., 2000; Hannon, 2002; Brodersen et al., 2008). Traditionally, sRNA species that are 24-nt long (derived from transposable elements and other repetitive sequences) are linked to transcriptional gene silencing via DNA methylation and repressive chromatin modification (Hamilton et al., 2002; Zilberman et al., 2003; Liu et al., 2004; Fagegaltier et al., 2009; Law and Jacobsen, 2010; Burkhart et al., 2011). SiRNA recruits several DNA- and histone-modifying proteins including cytosine methyltransferase, the chromomethylase 3 (Ossowski et al., 2008) which in turn mediate the formation of a transcriptionally inactive silent chromatin state. However, 21 nt long siRNAs may also

participate in siRNA-dependent methylation of genomic loci (Pontier et al., 2012). AGO is an important protein that complexes with sRNA to form the core of the RISC. In Arabidopsis thaliana, 10 different AGO proteins are known to mediate the effects of several distinct types of sRNAs (Vaucheret, 2008). Endo nucleolytic cleavage (slicing) activity catalysed by the AGO protein (Huntzinger and Izaurralde, 2011) is an important step in posttranscriptional silencing. Guide RNA confers sequence specificity to any RNA silencing reaction whereas the precise nature of silencing is determined by the properties of the associated AGO protein, including its ribonuclease activity, interacting proteins, and subcellular localization. Movement of plant sRNAs falls into two main categories: cell-to-cell (short-range) and systemic (long-range) movement (Melnyk et al., 2011). Local movement is symplastic, i.e., from the site of initiation to neighbouring cells through channels called plasmodesmata (Lough and Lucas, 2006). RNA silencing also spreads systemically over long distances through the vascular phloem tissue. This long distance or systemic movement of the silencing signal takes place over days (Voinnet et al., 1998) and it is generally from photosynthetic sources (i.e., leaves) to sucrose sinks (i.e., roots and growing points) through a bulk flow process. The systemic RNA silencing signal has been identified in plants by direct sampling of phloem sap (Yoo et al., 2004; Buhtz et al., 2008) and detection of RNAs in stocks and scions of grafted plants (Palauqui et al., 1997; Schwach et al., 2005; Brosnan et al., 2007; Dunoyer et al., 2010a; Molnar et al., 2010). Mobile silencing operates in a nucleotide-sequence-specific manner and its components include sRNA molecules (21– 24 nt). Molnar et al., (2010) have reported mobile sRNAs of the 24-nt size class that are associated with DNA methylation of targeted loci. It was consistent with the analysis of viral suppressors of systemic silencing in Nicotiana benthamiana (Hamilton et al., 2002) and the presence of 24-nt sRNA in the phloem sap of oilseed rape (Buhtz *et al.*, 2008) and pumpkin (Yoo *et al.*, 2004). Dunoyer et al., (2010a, b) showed that the mechanically delivered, fluorescently labeled 21- and 24-nt siRNAs move from cell to cell and over long distances. Artificial miRNAs (amiRNAs) were shown to move short distances in leaves (Schwab et al., 2006) or between the pollen vegetative cell cytoplasm and the sperm cells (Slotkin et al., 2009). Endogenous 21-nt miRNAs (miR399) could also be mobile between shoots and roots (Pant et al., 2008) and within the roots (miR165a and miR166b; Carlsbecker et al., 2010). RNA interference can be used to achieve desirable traits in crops by manipulating the gene expression. RNAi mediated gene

silencing technique mainly involves identification of the target genes followed by generating RNAi construct with hairpin cassette (gene cloned in sense and antisense orientation flanking a spacer or intron), plant transformation and finally screening and evaluating the traits.

MicroRNA (miRNA):- An important arm of RNAi involves the microRNAs (miRNAs). These are endogenous duplexes that post transcriptionally regulate gene expression by complexing with RISC and binding to the 32 untranslated regions (UTRs) of target sequences via short stretches of homology, termed "seed sequences" (Bartel et al., 2004). The primary mechanism of action of miRNAs is translational repression, although this can be accompanied by message degradation (Bagga et al., 2005). The miRNA duplexes possess incomplete Watson-Crick base pairing, and the antisense strand cannot be chosen by cleavage of the passenger strand as it is for siRNAs; therefore, the antisense strand must be chosen by an alternative mechanism (12-14). miRNAs are endogenous substrates for the RNAi machinery. They are initially expressed as long primary transcripts (pri-miRNAs), which are processed within the nucleus into 60–70 bp hairpins by the Microprocessor complex, consisting of Drosha and DGCR8 (Lee et al., 2003; Han et al., 2004) into pre miRNAs. The premiRNAs are further processed in the cytoplasm by Dicer and one of the two strands is loaded into RISC, presumably via interaction with one of the Dicer accessory proteins (Lee et al., 2006). Importantly, it is possible to exploit this native gene silencing pathway for regulation of gene(s) of choice. If the siRNA effector is delivered to the cell, it will "activate" RISC, resulting in potent and specific silencing of the targeted mRNA. Because of the potency and selectivity of RNAi, it has become the methodology of choice for silencing specific gene expression in mammalian cells. Plant miRNAs are a class of small regulatory RNAs (20-22 nt) that are encoded by endogenous miRNA genes and transcribed by RNA polymerase II into primary miRNAs (pri-miRNA) having partially double- stranded stem-loop structures (Jones-Rhoades et al., 2006). Following transcription, primiRNA is cleaved by a DCL1 enzyme in a two steps process resulting in production of a pre-miRNA and a mature miRNA duplex (miRNA/miRNA"). The mature miRNA is incorporated into RISC and mediates the degradation of mRNA target. miRNA can down-regulate the level of protein of their target genes through either translational repression (Aukerman and Sakai, 2003; Chen, 2004; Brodersen et al., 2008), through cleavage of transcript (Llave et al., 2002a; Xie et al., 2003), or

transcriptional inhibition (Bao et al., 2004; Khraiwesh et al., 2010). In animals, miRNA mostly act by translational inhibition, where they often bind motifs in the 3 UTRs of their targets, which show several mismatches to the miRNA. However, in plants target motifs of miRNA have few mismatches which are most often found in the coding sequences and act mostly by transcript cleavage through a mechanism closely related to RNAi. In animals, miRNA usually consist of 20-22 nucleotides where as in plants it is 20–24 nucleotides (Reinhart et al., 2002; Bartel, 2004). Plant miRNAs are less conserved compared to animal miRNAs. In plants, mostly the mature miRNAs are conserved whereas miRNA precursors are usually conserved in animals (Bartel, 2004). Similar to animlas, in Arabidopsis, a RNAse III-like enzymes carry out processing of miRNAs from primary precursors followed by incorporation into a protein complex named RISC. However, an additional step is included in the biogenesis of plant miRNAs, i.e., the methylation on the ribose of the last nucleotide of miRNA by the methyltransferase Hen1 (Park et al., 2002). Unlike animals, plant miRNAs show high degree of sequence complementarity to their target mRNAs (Rhoades et al., 2002). Because of this fact, bioinformatics prediction of plant miRNA targets is much easier and has facilitated prediction and subsequent validation of many plants' miRNA targets. A majority of plant miRNA targets includes genes encoding for transcription factors (Rhoades et al., 2002; Mitsuda and Ohme-Takagi, 2009), few code for hormone receptors (Navarro et al., 2006), some encode enzymes (Xie et al., 2003; Fujii et al., 2005). Many plant miRNAs are known to regulate posttranscriptional gene expression and play critical roles in many developmental processes, abiotic stresses and pathogen responses (Xin et al., 2010), in nutrient homeostasis etc. Functional characterization of several plant miRNA and their target need highthroughput sequencing at global genome-level (Wang et al., 2011). MiRNAs have been extensively studied in model plants such as rice, A. thaliana etc. Schwab et al., (2006) have designed a series of amiRNAs targeting different endogenous mRNAs and compared their effects to those of natural miRNAs. amiRNAs can be generated by replacing the sequences of miRNA/miRNA*within the miRNA precursor without disrupting its structural features. Like natural miRNAs, amiRNAs had varying number of target mismatches and could silence both single and multiple target genes with high specificity as determined by genome-wide expression profiling. The direct targets of amiRNAs can be accurately predicted by parameters of target selection already determined for natural miRNAs (Schwab et al., 2005). Thus, extensive base pairing with targets is required for plant miRNA

function. amiRNAs can be efficiently used for gene silencing, especially when there is need to down regulate several related, but not identical, target gene. Transgenic plants harbouring amiRNAs under constitutive and inducible promoters have shown specific and efficient down-regulation of target genes of interest with limited non-autonomous effect. Thus, amiRNAs have great potential for crop improvement.

Historical events related to the discovery of **RNAi:-** The journey toward the utilization of RNAi for plant disease management started well before there was any knowledge of its mode(s) of action. Early studies on virus-infected plants showed that in some cases plants were able to recover from symptoms and become immune to reinfection. These virus-specific responses were not understood at that time, but now we know that some are due to RNAi. In 1928, Wingard found that tobacco plants inoculated with Tobacco ringspot virus (TRSV) often recovered, and the newly expanded leaves appeared healthy instead of showing the typical ringspots visible on the inoculated leaves. Furthermore, when these asymptomatic leaves were challenged again with TRSV, they were immune to superinfection by TRSV. Ratcliff et al., 1997 further examined the specificity of plants showing recovery phenotypes. They showed that recovered leaves from plants inoculated with Tomato black ring virus (TBRV) were immune to subsequent inoculations with TBRV but were susceptible to other viruses unrelated to TBRV, and they provided evidence that the immunity was RNA sequence based (Ratcliff et al., 1997). In 1929, McKinney observed another specific antiviral response in plants. He showed that plants infected with mild forms of Tobacco mosaic virus (TMV), which caused light green mosaic, were resistant/immune to superinfection by more virulent strains of the same virus, which caused yellow mosaic (McKinney, 1929). As with recovery, these plants were susceptible to subsequent infections by unrelated viruses. Thus, in both cases there was a specific response toward the infecting virus that resulted in resistance/immunity, and it was homology dependent (Ratcliff et al., 1999). The recovery phenotype is not common for different plant virus infections, and it is somewhat difficult to imagine how it might be used for virus disease control. By contrast, several studies using different viruses and plants have shown that a virus could often protect plants against subsequent infections by the same or highly homologous strains of a virus. Various terminology, such as acquired immunity (Johnson, 1937; Salaman, 1933) super-infection exclusion, and cross protection, has been used to describe this interaction (Fulton, 1986; Ziebell, 2010). Regardless of the terminology

used, cross protection seems to be more applicable than recovery in the pursuit of plant protection. Early attempts were made to gain a fundamental understanding of cross protection, and some suggested that the coat protein (CP) of the protecting virus might be the functional molecule(s).

Process of RNAi:- In general, RNAi is triggered by double stranded RNA, which may be produced naturally in a cell or may enter the cell exogenously. An enzyme, called Dicer, cuts the long double stranded RNA into small pieces of approximately 21 nucleotides length. These small pieces could be miRNA (micro-RNA; originating from endogenous long dsRNA) or siRNA (small interfering RNA; originating from exogenous sources). These RNAs then bind to the RNA-induced silencing complex (RISC). After binding, one strand of the double stranded RNA is removed, leaving the remaining strand available to bind to messenger RNA target sequences. This strand is complementary to the sequence of the target mRNA. RNA Induced Silencing Complex (RISC) cleaves mRNA or represses their translation by homology dependent mRNA degradation, which effectively silences the gene. The use of RNAi has been extensively reported for modifying plants to enhance their nutritive value, pathogen and pest resistance, decreasing amount of unwanted metabolite production, etc. Recently two RNAi based crops have been given regulatory approval for commercial production and sale. These are the non-browning Arctic apples and the nonbrowning Innate potatoes. The firms producing these crops claim that the idea behind producing the nonbrowning apples and potatoes is not only to improve the look of the product, but it is also intended to increase the consumption of the raw fruits along with reducing naturally occurring carcinogens (as in the case of innate potatoes). While the science behind both these products is a little complicated as both are RNAi based, in simple way it can be put as both apples and potatoes have certain genes suppressed. Both of them, though genetically modified, are grown the same way as conventional varieties. These products are likely to find a place of attraction in the freshcut product sales.

Mechanism of RNAi:- The mechanism of RNAi involves a complex set of multiple RNA-protein interactions involving four big steps, *viz.*, formation of a complex of small interfering RNA (siRNA) with RNA induced silencing complex (RISC), beginning of RISC, target identification and target degradation (Nykanen *et al.*, 2001; Mello and Conte, 2004; Xu *et al.*, 2016). The overall efficiency of RNAi directed down regulation of gene expression and target recognition depends on activation and association of siRNA-RISC complex

(Zamore, 2000; Uhlirova et al., 2003; Kevin and Nikolaus, 2007). The mediators of RNAi are short nucleotide sequence of 21 to 22 base pairs (bp) which are gene specific in nature and are generated by a RNAase IIIlike enzyme catalysed reaction using long dsRNA as substrate, thus forming sense or antisense target RNA (Forstemann et al., 2007; Younis et al., 2014; Challa et al., 2019). The dsRNA enters into the cell via either of two processes, viz., the transmembrane channel-mediated uptake mechanism and an endocytosis-mediated uptake mechanism (Mette et al., 2000; Liu et al., 2009; Rangasamy and Siegfried, 2012; Tatiparti et al., 2017). In the nucleus, initial processing occurs with the help of Drosha, wherein precursor-micro RNAs (pre-miRNA) are produced and transported to cytoplasm, thereafter it is cleaved by Dicer into a mature micro RNAs along with siRNAs (Preuss, 2003; Rana, 2007; Allen and Walker, 2012; Darrington et al., 2017). Subsequently, these double stranded products associate with the Argonaute proteins in a way that one strand is selected, which guides in a sequence-specific manner, in gene silencing of complementary mRNAs by RISC (either suppression or degradation) (Zamore et al., 2000; Waterhouse et al., 2001; Ogita et al., 2003; Qiao et al., 2007; Sun et al., 2012; Sharma et al., 2013; Wu et al., 2017; Zhang et al., 2019).

- The entry of long double stranded RNA, such as an introduced transgene, a rogue genetic element or a viral intruder, triggers the RNAi pathway of cells. This results in the recruitment of the enzyme Dicer.
- Dicer cleaves the dsRNA into short, 20-25 base pairs long, fragments, called small interfering RNA (siRNA).
- An RNA induced silencing complex (RISC) then distinguishes between the two siRNA strands as either sense or antisense. The sense strands (with exactly the same sequence as the target gene) are degraded.
- The antisense strands on the other hand are incorporated to the RISC. These are used as guide to target messenger RNAs (mRNA) in a sequence specific manner.
- Messenger RNAs (mRNA), which codes for amino acids, are cleaved by RISC. The activated RISC can repeatedly participate in mRNA degradation, inhibiting protein synthesis.

RNAi as a Biotechnological Approach for Management of Biotic and Abiotic Stress:- RNA interference (RNAi) has emerged as a powerful biotechnological tool for addressing both biotic and abiotic stresses in plants. By enabling sequence-specific gene silencing, RNAi offers a targeted and environmentally friendly alternative to conventional breeding and chemical control strategies. This approach allows researchers and plant breeders to precisely manipulate gene expression, improving crop resilience and productivity.

Biotic stress, caused by pathogens such as viruses, bacteria, fungi, insects, and nematodes, significantly limits agricultural productivity. RNAi-based strategies can target essential genes in these organisms, thereby disrupting their life cycles without harming the host plant or surrounding ecosystems. Notably, transgenic crops expressing double-stranded RNA (dsRNA) targeting pest or pathogen genes have shown high efficacy in controlling infestations. For instance, Smart Stax Pro maize incorporates RNAi to suppress the expression of *DvSnf7*, a gene vital to western corn rootworm survival.

RNAi for Disease Control and Future Therapeutics: The ability to specifically target and silence disease-associated genes makes RNA interference (RNAi) a highly promising tool for future plant therapeutics. Since many plant diseases are driven by the activity of one or a few key genes, RNAi-based strategies offer an attractive and targeted method for disease control. This includes a wide range of plant pathogens, such as fungi, viruses, bacteria, and even viral-like organisms. Additionally, dominant genetic disorders in plants can potentially be mitigated through RNAi-mediated gene silencing, making it a versatile platform for both protection and crop improvement.

RNAi can be triggered through two primary approaches:

- 1. RNA-based delivery, wherein synthetic small interfering RNAs (siRNAs) are introduced directly into target cells. These siRNAs are typically 21-base pair duplexes and are delivered using carriers such as nanoparticles, liposomes, or other delivery systems. This method is straightforward and often results in rapid and effective gene silencing, but its effects are usually transient and may require repeated applications for sustained action.
- 2. DNA-based delivery, where the siRNA effectors are generated intracellularly from longer RNA hairpin precursors. In this approach, genes encoding short hairpin RNAs (shRNAs) are introduced into the plant genome or delivered via vectors. These shRNAs are transcribed in the nucleus, exported to the cytoplasm through the

endogenous miRNA pathway, and then processed by Dicer into functional siRNAs. This method offers the potential for stable and long-term gene silencing, particularly in gene therapy settings, where viral vectors can deliver the shRNA-encoding genes for sustained expression (Hannon *et al.*, 2004; Scherer *et al.*, 2003).

While RNA-based strategies provide quick and flexible control, DNA-based RNAi therapies hold promise for long-term and possibly heritable disease resistance in crops. As delivery technologies and our understanding of RNAi mechanisms continue to advance, the practical applications of RNAi in plant disease management and agricultural biotechnology are expected to expand significantly.

A. Biotic Stress Resistance:

Virus Resistance: Virus-induced gene silencing (VIGS) is a RNA-mediated PTGS mechanism that protects plants against foreign gene invasion (Beclin et al., 2002; Ding, 2010). VIGS has emerged as an extremely powerful functional genomics tool for knocking out gene expression of target plant genes in some plants. The concept of pathogen derived resistance (PDR) has promoted research aimed at achieving plants resistant to virus through genetic engineering (Simon-Mateo and García, 2011). PDR is either protein mediated involving protein encoded by the transgene or RNA-mediated, i.e., by the transcript produced from the transgene. In order to achieve PDR, hairpin dsRNA including small hairpin RNA (shRNA), self-complementary hpRNA, and intronspliced hpRNA were formed in vivo using inverse repeat sequences from viral genomes. Among these, PTGS with the highest efficiency was elicited by the method involving self-complementary hairpin RNAs separated by an intron (Smith et al., 2000; Wesley et al., 2001). High resistance against viruses has been observed in plants even in the presence of inverted repeats of dsRNA-induced PTGS (IR-PTGS; Beclin et al., 2002; Pandolfini et al., 2003; Zrachya et al., 2007). Resistance to Potato Spindle Tuber Viroid (PSTVd) infection was achieved in transgenic tomato plants producing dsRNA against PSTVd sequences (Nora et al., 2009). Similar strategy was used to successfully engineer resistance in cassava plants against African Cassava Mosaic Virus (ACMV; Vanderschuren et al., 2009). Virus resistance has been engineered successfully in plants by targeting the coat protein (CP) gene through RNAi. Powell-Abel et al., (1986) showed that transgenic tobacco expressing the CP gene of Tobacco Mosaic Virus (TMV) was resistant to TMV and that the resistance was due to the expressed CP. Later, this strategy was extended to generate resistance against many different viruses as potato resistant to Potato Virus Y (PVY; Missiou et al., 2004), tobacco resistant to Beet Necrotic Yellow Vein Virus (BNYVV; Andika et al., 2005), Cucumis cv. melo resistant to Papaya Ring Spot Virus type W (PRSV-W; Krubphachaya et al., 2007), N. benthamiana resistant to Cucumber Green Mottle Mosaic Virus (CGMMV; Kamachi et al., 2007), N. benthamiana and Prunus domestica resistant to Plum Pox virus (PPV; Hily et al., 2007). The use of RNA silencing strategy to engineer resistance is not limited to RNA viruses but can successfully be applied to DNA viruses. For example, blackgram plants recovered efficiently from geminivirus Vigna mungo yellow mosaic virus (VMYMV) infection when inoculated with hpRNA construct containing the promoter sequence of VMYMV under the control of the 35S promoter (Pooggin et al., 2003). RNAi method has been used to generate common bean resistant to geminivirus Beans Golden Mosaic Virus (BGMV; Bonfim et al., 2007). A broad-spectrum resistance has been developed against tospoviruses in tomato plants by targeting multiple regions of a viral gene (Bucher et al., 2006). Zhou et al., (2012) have used sequences from disease specific protein gene and CP gene from Rice Stripe Virus to develop resistance against Rice Stripe Disease. Many viruses express viral silencing repressors (VSRs) proteins to counter host antiviral RNA silencing (Burgyan and Havelda, 2011). One of the strategies to improve virus resistance involves targeting the miRNA against these VSR. Niu et al., (2006) developed Arabidopsis plants with specific resistance against Turnip Yellow Mosaic Virus (TYMV) and Turnip Mosaic Virus (TuMV) by expressing amiRNAs based on miR159 precursor of A. thaliana. These amiRNAs target the sequence of two VSRs, P69 of TYMV and HC-Pro TuMV. Transgenic tobacco resistant to Cucumber Mosaic Virus (CMV) was generated by targeting a VSR, 2b of CMV through expression of an amiRNA based on an A. thaliana miR171 precursor (Qu et al., 2007). TGBp1/ p25 of Potato Virus X (PVX) was targeted in tobacco by expression of amiRNAs based on an A. thaliana miR159a, miR167b, and miR171a precursors (Ai et al., 2011). Singh et al., (2014) generated transgenic tobacco plants resistant to Tomato leaf curl New Delhi virus (ToLCNDV) by transformation with trans-acting siRNA generating constructs against RNAi suppressor proteins (AC2 and AC4) of the geminivirus. Another promising strategy to reduce the multiplication and spread of virus in the plant includes the use of amiRNAs targeting the viral genes involved in replication, transmission, and symptom development after viral infection. Vu et al., (2013) used two amiRNA targeting the middle region of the AV1 (coat protein) transcript (amiR-AV1-3) and the overlapping region of the AV1 and AV2 (pre-coat protein) transcripts (amiR-AV1-1) of a geminivirus, Tomato leaf curl virus (ToLCV). Transgenic tomato plants expressing amiR-AV1-1, were highly tolerant to ToLCNDV and could successfully propagate until the T2 generation.

Bacterial Resistance: Bacterial diseases are extremely difficult to control due to rapid rate of spreading. RNAi mediated supression of two genes of Agrobacterium tumefaciens involved in crown gall tumor formation (iaaM and ipt) could significantly reduce the production of tumors in Arabidopsis (Escobar et al., 2001; Dunoyer et al., 2006). This strategy could be further extended to other plants. Fatty acids and their derivatives are important signaling molecule reported to negatively regulate plant's resistance to bacterial disease (Li et al., 2008a; Jiang et al., 2009). Arabidopsis and soybean plants showing enhanced resistance to multiple pathogens were generated by RNAi mediated suppression of SACPD gene encoding a fatty acid desaturase (Jiang et al., 2009). In Arabidopsis, miR393 was reported to repress auxin signaling by negatively regulating the F-box auxin receptors like TIR1, thereby restricting the infection by bacteria Pseudomonas syringae (Navarro et al., 2006). Transgenic Arabidopsis plants over-expressing miR393 had enhanced bacterial resistance but with some developmental alterations (Navarro et al., 2006). Two different miRNAs, miR398 (Jagadeeswaran et al., 2009) and miR825 (Fahlgren et al., 2007) were reported to be downregulated by bacterial infections. In the case of miR398, the expression of miR398 targets coding for two Cu/Zn superoxide dismutases (CSD1 and CSD2) was analyzed, and CSD1 was up-regulated upon bacterial infection in accordance with the down-regulation of miR398 under biotic stress (Jagadeeswaran et al., 2009). Very recently, new insight into miRNA function was gained with the discovery, that several miRNA families target genes of plant innate immune receptors (NBS-LRR) in Legumes (Zhai et al., 2011) and Solanaceae (Li et al., 2012). MiR482/2118 family of miRNAs were shown to target numerous NBS-LRR mRNAs encoding disease resistance proteins in tomato (Solanum lycopersicum) and other members of the Solanaceae (Shivaprasad et al., 2012). Viral and bacterial infection suppresses miR482- mediated silencing of R genes. Thus, these pathogens responsive miRNA are either up- or down-regulated in response to bacterial invasion and effect gene expression by suppressing negative regulators and inducing positive regulators of immune responses. Identification and characterization of the targets of these miRNAs would help decipher new players in the pathways of host defence. If these pathogen-regulated miRNAs serve as positive regulator of bacterial resistance, strategy to generate transgenics with enhanced bacterial resistance involves constitutive over expression of miRNA or amiRNA. When miRNAs act as negative regulators, transgenic plants over-expressing these miRNAs become more sensitive to bacteria. In these cases, up-regulation of their target genes might be an effective strategy for improving plant stress tolerance, which can be achieved by over-expressing a miRNA-resistant form of its target or using amiRNA target mimic (Franco-Zorrilla *et al.*, 2007).

Fungal Resistance: Targeting the genes of fatty acid metabolism through RNAi has proved to be an important strategy to generate diseases tolerance in various crop plants. RNAi-mediated suppression of a rice gene OsSSI2 led to enhanced resistance to blast fungus Magnaporthe grisea and leaf blight bacterium Xanthomonas oryzae (Jiang et al., 2009). Besides, enhanced disease resistance against M. grisea in rice was achieved by suppression of two genes namely OsFAD7 and OsFAD8 which are 3 fatty acid desaturases (Yara et al., 2007). RNAi mediated targeting of genes involved in lignin production, led to enhanced resistance of soybean to phytopathogen Sclerotinia sclerotiorum due to reduced lignin content (Peltier et al., 2009). Very recently, 24 miRNAs were shown to be involved in responses to attack by the fungus Blumeria graminis f. sp. tritici (Bgt) in wheat which cause a devastating disease of wheat powdery mildew (Xin et al., 2010). A rice miRNA osa-miR7695 was found to negatively regulate a natural resistance-associated macrophage protein 6 (OsNramp6) in response to the blast fungus Magnaporthe oryzae. Improved resistance to rice blast infection was achieved by over-expression of OsamiR7696 (Campo et al., 2013).

Insect pests and Nematode Resistance: RNA interference has also been applied to control insect pests which lead to substantial crop loss (Huvenne and Smagghe, 2010). The development of a new generation of insect-resistant crops involves feeding of dsRNA as a diet component to insect which was shown to efficiently down-regulate the targeted genes in insect (Price and Gatehouse, 2008). The strategy was used in corn plants by expression of dsRNAs for tubulin or vacuolar ATPase genes to develop western corn rootworm (WCR) resistant transgenic corn plants (Baum *et al.*, 2007). Cotton bollworm (*Helicoverpa armigera*) larvae showed reduced growth when fed on plant material expressing dsRNA specific to cytochrome P450 gene (CYP6AE14;

Mao et al., 2007). Silencing of genes involved in parasitism or housekeeping genes in the root-knot nematode by expression of dsRNA in host plant resulted in enhanced resistance to the nematode (Gheysen and Vanholme, 2007). Sindhu et al., (2009) has targeted four genes involved in parasitism of sugar beet cyst nematode (Heterodera schachtii), having host A. thaliana by RNAi. Though complete resistance was not achieved but the number of mature nematode females in different RNAi lines were reduced to 23-64%. Ibrahim et al., (2011) could successfully reduce the gall formation by *Meloidogyne incognita* in soybean roots by suppressing the genes encoding tyrosine phosphatase (TP) and mitochondrial stress-70 protein precursor (MSP). microRNAs were also reported to be involved in plant nematode interactions. In response to infection by the nematode, H. schachtii, miR161, miR164, miR167a, miR172c, miR396c, miR396a, b, and miR398a were down-regulated in Arabidopsis (Hewezi et al., 2008; Khraiwesh et al., 2012). Comparative analysis of miRNA profiling in soybean indicated that 101 miRNAs belonging to 40 families were responsive to the infection of the soybean cyst nematode (SCN; Heterodera glycines), the most devastating pathogen in soybean. It was further revealed that 20 miRNAs were differentially expressed between SCN resistant and susceptible soybean cultivars (Li et al., 2012). Moreover, it has been suggested that nematode induced miRNAs and sRNAs likely to be involved in feeding site establishment and parasitism, respectively (Hewezi et al., 2008). Over-expression of these nematode induced candidate miRNAs, and/or silencing of their corresponding targets, may provide clear insight about plant-nematode parasitism, and also may provide nematode resistance to crop plants. Nematode resistance can also be achieved by expressing amiRNA, containing known miRNA genes with the replaced seed region of the vital gene (parasitism or housekeeping) of plant parasitic nematode.

B. Abiotic stress:

Including drought, salinity, extreme temperatures, and oxidative stress—also severely impacts crop yield and quality. RNAi can be used to downregulate stress-responsive negative regulators or modulate metabolic pathways, enhancing plant tolerance to these harsh environmental conditions. Targeted silencing of genes associated with stress sensitivity can result in plants with improved adaptability and growth under adverse conditions.

Abiotic Stress Tolerance:

Drought and Salinity Tolerance: Water deficit or drought is one the major environmental stresses limiting

crop productivity. RNAi has been applied successfully to develop drought tolerant crops. RNAi mediated downregulation of farnesyl transferase in canola using the AtHPR1 promoter showed more resistance to seed abortion during flowering induced by water deficiency without affecting yield during drought stress (Wang et al., 2009). Transgenic rice plants tolerant to drought stress were developed by silencing of receptor for activated Ckinase 1 (RACK1; Li et al., 2009). The ubiquitin ligase gene has been targeted for RNAi in rice to enhance drought tolerance. Rice knockdown of a RING finger E3 ligase gene-OsDSG1 leads to enhanced drought tolerance (Park et al., 2010). Similarly, silencing of OsDIS1 (for *Oryza sativa* drought induced SINA protein 1), a C3HC4 RING finger E3 ligase by RNAi enhanced drought tolerance. Wang et al., (2011) studied legume model plant, Medicago truncatula and identified several drought-responsive miRNAs. The already known and predicted targets of these miRNAs were found to be involved in wide variety of processes in plant cell including development, transcription, protein degradation, detoxification, etc. It was observed that miR393 was strongly upregulated by dehydration, cold, high salinity, and ABA treatments (Sunkar and Zhu, 2004). On exposing Arabidopsis to varying degrees of different abiotic stress, up regulation was observed in miR402, miR319c, miR389a, and miR397b. Xin et al., (2010) identified and reported 12 miRNAs responsive to heat stress in wheat (Triticum aestivum L.). MiRNA responsive to various stresses (drought, cold, salinity, and ABA) were identified in rice seedlings (Jian et al., 2010). Among many stresses responsive miRNAs discovered in rice, only two miR393 and miR169 were found to be responsive to abiotic stress like dehydration (Zhao et al., 2007). In Arabidopsis, miR169 was down-regulated by drought stress, and its target nuclear factor YA5 (NF-YA5) was significantly induced upon drought stress. Transgenic plants over-expressing miR169a were more sensitive to drought stress with increased leaf water loss as compared to wild-type controls, and over-expression of NF-YA5 led to enhanced drought tolerance in transgenic plants (Li et al., 2008a). Similarly, a newly characterized Soybean (Glycine max L.) gene GmNFYA3, a target of miR169, was demonstrated to positively modulate drought stress tolerance in transgenic Arabidopsis plants (Ni et al., 2013). However, over expression of GmNFYA3 in Arabidopsis resulted in increased sensitivity to salinity stress and exogenous ABA (Ni et al., 2013). These findings were contrary to the observation in tomato (S. lycopersicum), in which miR169 was induced by drought stress and its four targets NF-YA1/2/3 and multidrug resistance associated protein gene 1 (MRP1) were all down-regulated by drought stress. Constitutive over-expression of tomato miR169c led to reduced stomatal openings, transpiration rate, and leaf water loss, thus enhanced drought tolerance in transgenic plants in comparison to wild-type controls (Zhang et al., 2011a). It is notable that transgenic tomato plants had no noticeable morphological and developmental alterations under field conditions, indicating that miR 169 or its targets could be potential candidate genes for genetic engineering to achieve enhanced abiotic stress tolerance in transgenic plants (Zhang et al., 2011a). However, as mentioned above, miR169 positively regulates plant response to drought stress in tomato, but negatively in Arabidopsis. The opposite roles miR 169 play in different plant species suggest that even conserved miRNAs might function in a species-specific manner and this should be taken into careful consideration when tailoring GM strategies for specific target species. In a recent study, transgenic creeping bent grass (Agrostis stolonifera) plants over-expressing a rice miR319 gene (Ossa miR319) exhibited enhanced tolerance to drought and salinity that was associated with increased leaf wax content and water retention but reduced sodium uptake. Gene expression analysis indicated that the enhanced abiotic stress tolerance can be attributed to a significant down-regulation of at least four putative turf miR319 target genes teosinte branched/cycloidea/proliferating factors (TCP)—AsPCF5, AsPCF6, AsPCF8, and AsTCP14 and a homolog of a rice NAC domain gene AsNAC60 (Zhou et al., 2013). It is noticeable that overexpression of Osa-miR319 caused pleiotropic phenotypes including increased leaf size, enlarged stems and decreased tiller number, which are undesirable traits for creeping bent grass. To better utilize the miR319-based GM strategy, further functional characterization of miR319 targets or downstream genes in the related biological pathways needs to be undertaken. However, the mechanism of miR319-mediated plant abiotic stress response revealed from this study provides important information to develop novel strategies for plant genetic

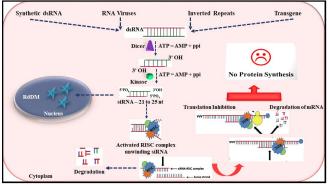
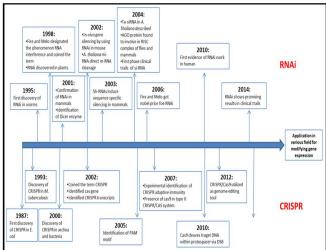



Fig. 1: Mechanism of RNA Interference.

engineering and has the potential to be applied in other important crop species. MiR159 was reported to respond to hormone signalling and dehydration responses in Arabidopsis (Achard *et al.*, 2004; Reves and Chua, 2007). Hu et al., (2009) showed that most of the rice histone deacetylases genes are responsive to drought or salt stresses with specific patterns of expression and divergent developmental functions compared to closely related homologs in Arabidopsis. Trindade et al., (2010) identified several conserved miRNAs in M. truncatula plants which are expressed differentially in water-deficit condition. MiR169 was shown to be down-regulated in roots, whereas miR398a/b and miR408 showed very high expression in shoots as well as roots. Hwang et al., (2011) reported a drought stress-responsive miR171 family in potato plants, Solanum tuberosum which miR171a, miR171b, and miR171c. The RNAi-mediated silencing of farnesyl transferase genes (FTA or FTB) in canola resulted in reduced transpiration rate due to decreased stomatal conductance, thereby promoting yield (Wang et al., 2005, 2009).

Cold and Heat Stress Tolerance: The expression of miR319 was reported to change in response to cold stress in Arabidopsis (Sunkar and Zhu, 2004; Liu *et al.*, 2008), rice (Lv *et al.*, 2010), and sugarcane (Thiebaut *et al.*, 2011). Further transgenic studies using wild-type plants as controls indicated that over-expression of OsamiR319 gene led to increased cold stress tolerance (4°C) after chilling acclimation(12°C) of plants (Yang *et al.*, 2013). However, miR319 transgenic rice plants displayed severe developmental delay. To avoid the pleiotropic effect of miR319, two RNAi lines for the miR319 targets, OsPCF5 and OsTCP21, were generated. These RNAi lines, upon chilling acclimation, also exhibited better cold tolerance than wild-type controls, but were phenotypically

Fig. 2: Graphical representation of RNAi and CRISPER technology as blow diagram.

Table 1: Examples of novel plant traits engineered through RNAi.

Trait	Target Gene	Host	Application	
Enhance- dnutrient content	Lyc	Tomato	Increased concentration of lycopene (carotenoid antioxidant)	
	DET1	Tomato	Higher flavonoid and b-carotene contents	
	SBEII	Wheat, Sweet	Increased levels of amylose for glycemic management and	
		potato, Maize	digestive health	
	FAD2	Canola, Peanut, Cotton	Increased oleic acid content	
	SAD1	Cotton	Increased stearic acid content	
	ZLKR/SDH	Maize	Lysine-fortified maize	
Reduced	CaMXMT1	Coffee	Decaffeinated coffee	
alkaloid	COR	Opium poppy	Production of non-narcotic alkaloid, instead of morphine	
production	CYP82E4	Tobacco	Reduced levels of the carcinogen nornicotine in cured leaves	
Heavy metal accumulation	ACR2	Arabidopsis	Arsenic hyperaccumulation for phytoremediation	
Reduced polyphenol production	s-cadinene synthase gene	Cotton	Lower gossypol levels in cottonseeds, for safe consumption	
	LeETR4	Tomato	Early ripening tomatoes	
Ethylene- sensitivity	ACC oxidase gene	Tomato Longer shelf life because of slow ripening		
Reducedall-	Arah2	Peanut	Allergen-free peanuts	
ergenicity	Lolp1, Lolp2	Ryegrass	Hypo-allergenic ryegrass	
Reduced production of lachrymatory factor synthase	lachrymatory factor synthase gene	Onion	"Tearless" onion	

normal. It should be noted that improvement of plant cold tolerance in the miR319 over expression lines was more significant than that in the OsPCF5 and OsTCP21 RNAi lines (Yang et al., 2013), most likely due to target function redundancy in the latter case. This is also a challenge when manipulating miRNA targets instead of miRNAs themselves for plant trait modification, because in some cases multiple targets have to be simultaneously downregulated to achieve the same level of effect as overexpression of an individual miRNA gene. Guan et al., (2013) discovered a novel plant thermotolerance mechanism, especially for the protection of reproductive organs. It involves induction of miR398 to downregulate its targets CSD (copper/zinc superoxide dismutase) genes, CSD1 and CSD2 as well as CCS (a gene encoding copper chaperone for both CSD1 and CSD2; Guan et al., 2013). They found that csd1, csd2, and ccs mutants displayed higher heat stress tolerance than wild-type plants associated with increased accumulation of heat stress transcription factors and heat shock proteins and reduced damage to flowers (Guan et al., 2013). These results strongly suggest that manipulating miR398 or its targets can be an applicable strategy to increase heat tolerance in crop species, especially in corn, which suffers damage to its reproductive tissues by prolonged periods of high summer temperatures.

Oxidative Stress Tolerance: Plants tend to accumulate reactive oxygen species (ROS) in response to environmental stimuli such as high intensity light, extreme temperatures, UV radiation, heavy metals, salinity, drought stresses, and mechanical stresses (Khraiwesh et al., 2012). Superoxide dismutases (SODs) in plants can detoxify superoxide radicals by converting them into molecular oxygen and hydrogen peroxide. Several studies have been conducted to improve plant stress tolerance by over-expression of superoxide dismutase (Cu/Zn-SODs) in transgenic plants which detoxify superoxide radicals (Tepperman and Dunsmuir, 1990; Pitcher et al., 1991; Gupta et al., 1993; Perl et al., 1993; Sunkar et al., 2006). However, in some of the studies, the transgenic plants exhibited minimal or no increase in stress tolerance (Tepperman and Dunsmuir, 1990; Pitcher et al., 1991). Sunkar et al., (2006) offered an improved strategy to solve this problem by overexpressing miR398-resistant form of CSD2, which led to increased tolerance to high intensity light, heavy metals and other oxidative stresses (Table 1; Sunkar et al., 2006). The exploration of interactions between miR398 and its targets (CSD1 and CSD2) also provided a possible explanation to the previously failed attempts. The expression of the introduced SOD transgenes containing the miR398 target sites were negatively impacted by

miR398- mediated gene regulation.

Overall, RNAi offers a precise, sustainable, and scalable solution for developing stress-resilient crop varieties. As the global climate continues to shift and the demand for food rises, integrating RNAi into crop improvement programs could be vital for achieving food security and sustainable agriculture.

Engineered plant viruses in a trans-kingdom silencing strategy against their insect vectors: The majority of plant-infecting viruses have single-stranded RNA as their genetic material and they replicate their genomes in the plant cell cytoplasm through dsRNA intermediates. Thus, a conceptual approach which might be used to confer resistance against plant viruses is to pre-program plants to have an active RNAi defence against a particular viral RNA before the plant is challenged by that virus. Then, when the plant is challenged by the virus, the already active RNAi would recognize and degrade the incoming viral RNA before the virus can replicate and become established. Fortunately, plants can be genetically engineered to contain and express new genes, so engineering plants for specific antiviral RNAi-based resistance can be done. Many plants can be genetically engineered by taking advantage of the common soil-inhabiting bacterium Agrobacterium tumefaciens, which naturally transfers genes into plant cells, causing the disease crown gall. Agrobacterium tumefaciens contains a large plasmid, the Ti plasmid. When A. tumefaciens encounters a wounded plant cell, it transfers and inserts a portion of the Ti plasmid, the T-DNA, into the plant cell chromosome; the transformed plant cell then expresses the genes on the T-DNA. The wild-type T-DNA contains genes encoding for plant hormones; expression of these genes in the transformed cells results in galls developing at the site of infection. But the Ti plasmid can be genetically engineered to remove the genes leading to gall formation (disarmed Ti plasmid) and modified instead to contain and express desirable genes; for antiviral resistance, this could mean engineering it to express RNA designed to induce RNAi activity toward the viral RNA genome. Agrobacterium tumefaciens can be used to transfer these genes into individual plant cells, and the individual transformed plant cells can be cultured in vitro to regenerate whole plants. As each cell of the plant came from the original transformed cell, all cells will now contain the transgene in their chromosomal DNA, and it can be stable for generations.

Role of RNAi for improvement of crop and plant nutritional value:

Plant Architecture and Biomass: RNA

interference can be employed successfully to improve yield of crop and fruit plants by manipulating the basic agronomic traits of plant such as height, inflorescence, branching and size. RNAi mediated knockdown of a gene OsDWARF4 in rice resulted in shorter plants with erect leaf architecture leading to increased photosynthesis in the lower leaves. Such plant has potential for improved yields under dense planting conditions (Feldmann, 2006). Some plant materials show recalcitrance to a process of saccharification which causes major limitation for conversion of lignocellulosic biomass to ethanol. The problem of recalcitrance of plant cell wall to bioconversion can be overcome by genetic reduction of lignin content (Chen and Dixon, 2007). Independent down-regulation of each of six lignin biosynthesis enzymes in transgenic alfalfa lines, yielded nearly twice as much sugar from stem's cell walls as compared to wild-type plants (Reddy et al., 2005). Down-regulation of lignin genes like cinnamate 4-hydroxylase (C3H), shikimate hydroxycinnamoyl transferase (HCT) and 4-coumaratecoA ligase (4CL) in plants reduced total lignin content, improved accessibility of cellulases for cellulose degradation and increased dry matter degradability (Hisano et al., 2009). This lignin modification also facilitated bypassing the need for acid pre-treatment (Chen and Dixon, 2007). Over-expression of the maize Corngrass1 (Cg1) miRNA that belongs to the MIR156 family caused prolonged vegetative phase and delayed flowering (Chuck et al., 2011) resulting in increased biomass. The transgenic plants showed up to 250% more starch and improved digestibility (Chuck et al., 2011). It was reported that the degrees of morphological changes and biomass yields were related to the expression level of an exogenous rice miRNA Osa-miR156b (Fu et al., 2012). Transgenic switch grass plants with relatively high levels of miR156 showed highly stunted growth, whereas those with moderate and low levels of miR156 expression had 58–101% more biomass production than wild-type controls as a result of increases in tiller numbers. It was also observed that over-expression of rice miR156 could improve the yield of solubilised sugar as well as forage digestibility. Over-expression of miR156 led to increased biomass in other plant species including Arabidopsis and rice (Schwab et al., 2005; Xie et al., 2006, 2012). Cg1 over-expressing, poplar transgenics plants showed significant increase in the growth of axillary meristem, shortening of internode length, and reduction in stem lignin content.

Grain yield and grain content: Plant architecture can be manipulated in order to achieve increased grain yield like in rice plants (Jiao *et al.*, 2010; Miura *et al.*,

Table 2: SOWT Analysis of RNA Interference (RNAi) and CRISPR/ Cas9 Technology for crop Improvement.

RNA Interference (RNAi):	CRISPR/Cas9:	Remarks
Mechanism: RNAi targets RNA transcripts.	Mechanism: CRISPR targets DNA sequence.	Wider used application of
Because of the RNAi involves the use of	Because of the CRISPR /Cas9 utilizes a	CRISPR system is yet to
small RNA molecules (like siRNA or	guide RNA (gRNA) to direct the Cas9	be established at a
miRNA) to silence gene expression by	enzyme to a specific DNA sequence,	genome scale. But to
targeting and degrading mRNA or	where it can induce a double-strand break.	selecting the best gene
blocking its translation.	This break can be repaired by the cell,	silencing method due to
	leading to gene knockout, or be used as	RNAi.
	a template for gene editing.	
Applications: RNAi is widely used in	Applications: CRISPR is a versatile tool for	But the increasing
functional genomics research, therapeutic	gene editing, including gene knockout,	advantages of
applications (e.g., targeting viral RNAs),	gene activation, and targeted DNA	CRISPR/Cas9
and crop improvement. RNAi is the	modifications. It has applications in	maydominate over RNAi
post-transcriptional gene silencing	research, medicine, and agriculture.	in near future. CRISPR is
mechanism generally found in	CRISPR is the new age genome editing	the biggest threatto RNAi.
eukaryotes. RNAi is having a unique	tool that naturally serves as defence	
space in diverse genetic applications.	barrier found in prokaryotes. the increasing	
	advantages of CRISPR/Cas9 may dominate	
	over RNAi in near future.	
Strengths: RNAi is relatively easy to	Strengths: CRISPR offers high precision	In near future predictably,
implement and can achieve transient	and efficiency in gene editing, with the	CRISPR/Cas9 will rule
gene silencing. It is mostly used for	potential for durable changes. It is an	molecular biology lab for
research and therapeutic purposes.	important gene editing tool that cleaves	modifying gene expression,
	DNA sequences.	while RNAi will likely to
		be cornered with restricted
TY I DAYA: CC C	W I GDIGDD I GG	domains of applications.
Weaknesses: RNAi can suffer from	Weaknesses: CRISPR can have off-target	
off-target effects (affecting genes other	effects, although they are generally	
than the intended target) and can be less	considered lower than RNAi. There are also	
efficient than CRISPR in some contexts.	ongoing efforts to improve the delivery	
	and specificity of CRISPR components.	

2010; Springer, 2010; Wang et al., 2012). RNAi-mediated suppression of GA 20-oxidase (OsGA20ox2) gene resulted in semi-dwarf plants from a taller rice variety QX1. This RNAi transgenic exhibited significant increase in panicle length, increased number of seeds per panicle and higher test (1000 grain) weight (Qiao et al., 2007). OsSPL14 (Souamosa promoter binding protein-like 14) was reported to be the target of OsamiR156 in rice (Jiao et al., 2010; Miura et al., 2010) and was shown to positively regulate the rice plant architecture leading to enhanced yield of rice grain (Jiao et al., 2010). Higher expression of OsSPL14 could modify the rice plant architecture resulting in decreased tiller number and increased grain yield (Jiao et al., 2010; Miura et al., 2010; Wang et al., 2012). Wang et al., (2012) showed OsSPL16 to be a positive regulator of cell proliferation with increase in grain width and yield in over-expressing rice plants. However, elevated expression of OsSPL16 resulted in decrease grain appearance quality. This was

expected as grain quality and yield are usually negatively correlated. But, decreased expression of OsSPL16 resulted in slender grains with better quality. Thus, miR156 and its targets OsSPL14 or OsSPL16 can be used for modifying plant architecture to create superior rice cultivars with greater yield. Recently, Guo et al., (2013) showed interactions of OsmiR444a regulated OsMADS57, OsTB1 (TEO-SINTE BRANCHED1) and D14 (Dwarf14) in controlling rice tillering. Thus, manipulating OsmiR444a and its targets by genetic engineering can prove to be an important strategy to achieve high grain yield (Guo et al., 2013). Zhang et al., (2013) reported that over-expression of OsmiR397, which is expressed naturally in young panicles and grains of rice promotes panicle branching and enlargement of grain size, causing an increase in overall grain yield of up to 25% in a field trial. OsmiR397 increases grain yield by down-regulating its target, OsLAC coding for a laccaselike protein that is involved in the sensitivity of plants to

Trait(s)	Crop Used	Targeted Gene(s)
Drought tolerance	Z. mays (Maize)	ARGOS8
Turnip mosaic virus (TMV) resistance	A. thaliana	eIF(iso)4E
Cucumber vein yellowing virus (CMYV) resistance	Cucumis sativus	eIF4E
Drought tolerance	S. lycopersicum	SlMAPK3
Cold tolerance	O. sativa	OsAnn3
Parthenocarpic fruit development	S. lycopersicum	SlIAA9
Chilling stress tolerance	S. lycopersicum	SlCBF1
Tomato yellow leaf curl virus (TYLCV) resistance	S. lycopersicum, N. benthamiana	Coat protein (CP) Replicase (Rep)
Cauliflower mosaic virus (CMV) resistance	A. thaliana	CaMV CP
Rice tungro spherical virus (RTSV) resistance	O. sativa	eIF4G
Salt tolerance	O. sativa	OsRR22
Male-sterile development	T. aestivum	Ms1
Heat stress tolerance	S. lycopersicum	SlMAPK3
Drought and salt stress tolerance	A. thaliana	DAP4 SOD7
Drought tolerance	A. inaliana	AREB1
Wheat dwarf virus (WDV) resistance	Hordeum vulgare	CP Rep/Rep4
Yield improvement	B. napus	BnaMAX1
Yield improvementStress tolerance	O. sativa (Nippobare)	OsPIN5b GS3 OsMYB30
Yield improvement	O sating	Cyt P450 homeologs OsBADH2
Drought and stress tolerance	O. sativa	OsDST
Tomato yellow leaf curl virus (TYLCV) resistance	S. lycopersicum	rgsCaM

Glycine max

Table 3: The following traits targeted gene through CRISPR technology (Meenakshi Rajput *et al.*, 2021).

brassinosteroids. Since, miR397 is highly conserved across different species; this strategy can be extended to other cereal crops for increasing grain yield.

Soyabean mosaic virus (SMV) resistance

Flower colour modification by RNAi-mediated gene silencing: Gentians, Gentiana triflora, Gentiana scabra and their interspecific hybrid, are one of the most popular floricultural plants in Japan, and more than half of gentian production is from the Iwate prefecture. Gentians come into bloom from early summer to late autumn in Japan, and are often used as ornamental cut flowers. Genetic engineering approaches are being applied to several ornamental plants (Forkmann et al., 2001; Tanaka et al., 1998; Tanaka et al., 2005). For example, Florigene Ltd. and Suntory Ltd. have developed blue flowered carnations using genetic engineering, and they are commercialized in North America, Australia and Japan (Tanaka et al., 2005). We have also produced whiteflowered transgenic gentians by suppressing the chalcone synthase (CHS) gene using antisense technology (Nishihara et al., 2006). In this case, only 3 of 17 independent transgenic lines displayed white-flowered phenotypes, but other transformants did not lead to successful suppression of CHS gene expression. Moreover, no transgenic gentian plants with suppressed expression of other anthocyanin biosynthetic genes, such as dihydroflavonol 4-reductase (DFR) and flavonoid 3, 5-hydroxylase (F3 5 H) genes, have so far been obtained

by antisense and sense suppression technology (Nishihara *et al.*, 2005). The low frequency of down regulation of the targeted genes was thought result from the use of both the cauliflower mosaic virus (CaMV) 35S promoter and antisense gene suppression technology. Gene silencing by RNAi was also utilized to modify the flower color in some plant species, including petunia, torenia and tobacco plants (Tsuda *et al.*, 2004; Nishihara *et al.*, 2005; Nakamura *et al.*, 2006; Nakatsuka *et al.*, 2007a; Nakatsuka *et al.*, 2007b; Nakatsuka *et al.*, 2008).

GmF3H1 GmF3H2 GmFNSII-1

Fruit nutritional value and edibility: Tomato (Lycopersicon esculentum) is one of the most economically important fruit minerals, fibres, and vitamins (Rajam et al., 2007). RNAi has been utilized in development of tomato fruit with enhanced level of carotenoids and flavonoids which are highly beneficial for human health. RNAi in combination with fruit specific promoter has been used to suppress an endogenous DET1 gene in tomato, a photomorphogenesis regulatory gene involved in repression of several light controlled signalling pathways (Davuluri et al., 2005). DET1 was specifically degraded in transgenic tomatoes with suppressed DET1, accompanied by an increase in the level of flavonoid and carotenoid. Abscisic acid (ABA) plays important roles during tomato fruit ripening. The SINCED1 gene of tomato encoding 9-cis-epoxycarotenoid dioxygenase), an important enzyme in the ABA biosynthesis, was

suppressed by RNAi. The fruits from RNAi lines showed enhanced accumulation of upstream compounds in the pathway, chiefly lycopene and β carotene. Similarly, RNAi has been utilized to increase the carotenoid content of rapeseed (*Brassica napus*) by down regulating the expression of lycopene epsilon cyclase (ε -CYC) gene. The seeds obtained from transgenic Brassica showed increased in zeaxanthin, violaxanthin, β -carotene, and lutein content (Yu *et al.*, 2007). RNAi approach has also been used in apple to improve the fruit quality by enhanced self-life (Dandekar *et al.*, 2004), reducing the amount of a major apple allergen (Gilisen *et al.*, 2005) and silencing the leaf sorbitol synthesis which affects fruit quality such as starch accumulation and sugar-acid balance (Teo *et al.*, 2006).

Seedless Fruit Development (Parthenocarpy):

Parthenocarpy or seedlessness is a process involving production of seedless fruits, developed from the ovary without pollination and fertilization. Parthenocarpy or seed lessness is a highly desirable agronomic trait for fruit which enhances its marketing values (Molesini et al., 2012) because high yield can be achieved even under environmental conditions unfavourable for pollination and fertilization. In tomato, seedless fruits have been achieved by down-regulating a chalcone synthase, a gene involved in first step of flavonoid biosynthesis (Schijlen et al., 2007). Phytohormones such as auxin and gibberellins are closely associated with the trait of parthenocarpy (Molesini et al., 2012) which in turn are regulated by many miRNAs. Thus, manipulating the level of phytohormones by controlling activities of miRNAs or their targets can prove to be an important approach to achieve parthenocarpy. For example, expression of an aberrant form of auxin response factor 8 (ARF8), a target of miR167 (Ru et al., 2006; Wu et al., 2006; Molesini et al., 2012), resulted in parthenocarpic fruit in both Arabidopsis and tomato (Goetz et al., 2007). Seedless fruits were observed in tomato plants when ARF7 function was suppressed using RNAi (De Jong et al., 2009). Parthenocarpic fruits were also observed in tomato in which genes of the AUCSIA family coding for 53amino-acid-long (protein or peptide) were functionally suppressed by RNAi (Molesini et al., 2009).

CRISPR/Cas9 system-mediated gene editing in crops: Both RNA interference (RNAi) and CRISPR technologies are powerful tools for manipulating gene expression, but they work through different mechanisms. RNAi primarily silences gene expression at the post-transcriptional level by targeting mRNA, while CRISPR/Cas9 enables targeted DNA editing and can be used for gene knockout or activation. While RNAi

has been a prominent research tool for gene silencing, CRISPR has emerged as a leading technology for genome editing.

Application of RNAi Technology: RNA interference (RNAi) technology has revolutionized functional genomics and is now widely recognized as a versatile tool in agriculture, particularly for improving crop resilience, yield, and protection against pests and diseases. By enabling the targeted silencing of specific genes, RNAi offers a precise and environmentally sustainable alternative to chemical pesticides and traditional breeding techniques.

Crop Protection Against Insect Pests: One of the most impactful applications of RNAi in agriculture is pest control. RNAi can be used to silence essential genes in insect pests by delivering double-stranded RNA (dsRNA) molecules through genetically modified plants, topical sprays, or baits. Upon ingestion, the dsRNA is processed within the pest's cells, leading to gene knockdown and eventual mortality or reproductive failure. Commercial examples include SmartStax® Pro maize, which expresses dsRNA targeting the *DvSnf7* gene in the Western corn rootworm.

Disease Resistance in Plants: RNAi is also being employed to combat plant pathogens such as viruses, fungi, and bacteria. By targeting pathogen-specific genes, RNAi can prevent infection or suppress disease progression. Host-induced gene silencing (HIGS) is a prominent approach where plants are engineered to produce dsRNA targeting genes in pathogens, conferring resistance without the use of chemicals. For example, transgenic wheat expressing dsRNA against *Fusarium graminearum* genes has shown enhanced resistance to Fusarium head blight.

Weed and Nematode Management: RNAi holds potential in the management of parasitic weeds and plant-parasitic nematodes. Targeting essential genes in these organisms through plant-delivered dsRNA can disrupt their development and parasitism. This approach provides a species-specific and ecologically safe alternative to herbicides and nematicides.

Abiotic Stress Tolerance: Beyond biotic threats, RNAi can be harnessed to improve plant tolerance to abiotic stresses such as drought, salinity, heat, and cold. Silencing negative regulators of stress response pathways or modulating transcription factors involved in stress signaling enables crops to better withstand environmental extremes. This application is especially critical in the face of climate change and the need for sustainable food production.

Nutritional Enhancement and Quality Traits: RNAi can be applied to modify metabolic pathways in crops to enhance nutritional content, shelf life, or taste. For instance, silencing of the *polygalacturonase* gene in tomatoes delays fruit softening, improving post-harvest shelf life. Similarly, RNAi has been used to reduce allergens and toxic compounds in food crops, making them safer for consumption.

Functional Genomics and Gene Discovery: In research, RNAi serves as a critical reverse genetics tool to study gene function. By selectively silencing genes in model plants like *Arabidopsis thaliana*, scientists can infer gene roles in growth, development, and stress response. This knowledge aids in the identification of candidate genes for crop improvement.

RNAi technology has thus emerged as a cornerstone of modern plant biotechnology. Its precision, scalability, and broad applicability make it a vital component of sustainable agriculture and crop enhancement strategies.

- In plant system, it provides defence mechanism to protect against infection by viruses, transposons and other insertional elements.
- RNAi also plays a role in regulating development and genome maintenance.
- Development of male sterile plants in rice.
- Recently two RNAi based crops have been given regulatory approval for commercial production and sale. These are the non-browning Arctic apples and the non-browning Innate potatoes. The firms producing these crops claim that the idea behind producing the non-browning apples and potatoes is not only to improve the look of the product, but it is also intended to increase the consumption of the raw fruits along with reducing naturally occurring carcinogens (as in the case of innate potatoes). While the science behind both these products is a little complicated as both are RNAi based, in simple way it can be put as both apples and potatoes have certain genes suppressed. Both of them, though genetically modified, are grown the same way as conventional varieties. These products are likely to find a place of attraction in the fresh cut product sales.

Advantages of RNAi:

- High Gene Specificity: RNAi allows for precise targeting of specific genes, minimizing off-target effects and ensuring accuracy in gene silencing.
- Efficient Gene Silencing: It achieves high levels

- of gene knockdown, often sufficient to observe phenotypic effects and control undesirable traits or pathogens.
- Rapid Screening: RNAi enables faster identification of gene function in targeted plants, reducing the time required for functional genomics studies.
- Inducibility: RNAi can be designed to be inducible under specific conditions (e.g., stress, developmental stage), allowing controlled gene silencing when needed.

Disadvantages of RNAi:

- Incomplete Gene Knockdown: RNAi
 typically reduces gene expression but does not
 completely eliminate it, which may be insufficient
 in cases where total gene suppression is
 necessary.
- Off-target Effects: Small interfering RNAs (siRNAs) can sometimes trigger unintended silencing of non-target genes due to sequence similarities, leading to undesirable outcomes.
- Activation of Unwanted Pathways: In some cases, siRNA can unintentionally activate immune responses or other cellular pathways, potentially affecting overall plant health or development.

Conclusions and Future Perspectives

RNAi in Crop Improvement and Nematode Management: Current Advances and Future Prospects: RNA interference (RNAi) has emerged as a powerful and environmentally sustainable strategy for managing multiple pests and pathogens, including plant-parasitic nematodes. As agriculture moves toward reducing reliance on harmful chemical pesticides, RNAi offers a gene-specific, eco-friendly alternative for crop protection. However, nematode management presents unique challenges due to their obligate parasitism and dependence on living host tissue for survival.

Host-induced gene silencing (HIGS) has shown promising results in controlling root-knot nematodes (RKNs) and cyst nematodes (CNs). Advances in functional genomics, the availability of nematode genome sequences, and sophisticated bioinformatics tools have enabled the design of dsRNA constructs with minimized off-target effects. The stacking of multiple dsRNA sequences targeting different nematode genes has further enhanced the efficacy of RNAi-based nematode control strategies.

Beyond pest management, RNAi has become a key

tool in functional genomics and crop improvement. Small RNAs such as siRNAs and miRNAs are now routinely employed to silence or modulate gene expression in plants. This allows for the precise manipulation of both beneficial and detrimental genes, offering plant biologists a way to develop novel traits and improve existing ones. Artificial miRNAs (amiRNAs), overexpressed natural miRNAs, and gene-specific siRNAs have been utilized to enhance crop productivity, biomass, and grain yield.

In addition to yield-related traits, RNAi has been successfully applied to improve nutritional quality in crops. Examples include cereals, fruits, and vegetables enriched with essential minerals, vitamins, amino acids, and fatty acids. Furthermore, RNAi-based approaches have enabled the development of plants with enhanced abiotic stress tolerance (especially drought resistance) and resistance to biotic stresses such as viruses, bacteria, insects, and nematodes.

The growing body of research on small non-coding RNAs (sRNAs) continues to provide insights into post-transcriptional gene regulation and stress response mechanisms. The completion of numerous plant genome sequencing projects has accelerated the identification and functional analysis of RNAi-related pathways, allowing researchers to engineer crops with better resilience and agronomic performance.

An important distinction exists between traditional transgenic crops expressing heterologous proteins and RNAi-based crops expressing non-coding RNA constructs. Unlike protein-based traits, RNAi constructs do not produce proteins and thus bypass many safety concerns related to allergenicity and toxicity. According to the U.S. Food and Drug Administration (FDA, 1992), introduced nucleic acids themselves do not raise safety concerns. Furthermore, in its guidance on RNA-based traits, the FDA clarified that the use of antisense RNAs or other non-coding RNA strategies does not inherently pose safety risks. Therefore, transgenic crops engineered with RNAi constructs generally do not require acute oral toxicity or digestibility testing, in contrast to those producing novel proteins.

Nevertheless, biosafety concerns remain, particularly in relation to transcriptional gene silencing via chromatin modifications, which may lead to unintended heritable epigenetic changes. These concerns necessitate careful design of RNAi constructs and thorough risk assessment, particularly for food safety and environmental impact.

Despite a few limitations, RNAi-based crop improvement strategies hold enormous promise. By leveraging small non-coding RNAs for precise gene regulation, researchers can develop crops with increased yield, enhanced nutrition, and improved resilience to stress, thereby contributing significantly to global food security and sustainable agriculture.

References:

- Achard, P., Herr A., Baulcombe D. C. and Harberd N.P. (2004). Modulation of floral development by gibberellin-regulated microRNA. *Development*, **131**, 3357-3365. doi: 10.1242/dev.01206
- Agrawal, N., Dasaradhi P.V.N., Mohmmed A., Malhotra P., Bhatnagar R.K. and Mukherjee S.K. (2003). RNA Interference: Biology, Mechanism, and Applications. *Microbiology and Molecular Biology Reviews*, **67**, 657-685.
- Ai, T., Zhang L., Gao Z., Zhu C.X. and Guo X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. *Plant Biol.* **13**, 304-316. doi: 10.1111/j.1438-8677.2010.00374.x
- Allen, M.L. and Walker W.B. (2012). *J. Insect Physiol.*, **58**, 391-396.
- Andika, I.B., Kondo H. and Tamada T. (2005). Evidence that RNA silencing mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. *Mol. Plant Microbe Interact.* **18**, 194-204. doi: 10.1094/MPMI18-0194.
- Araujo, R.N., Santos A., Pinto F.S., Gontijo N.F., Lehane M.J. and Pereira M.H. (2006). *Insect Biochemical Molecular Biology*, **36**, 683-693.
- Artymovich, K.A. (2009). Basic Biotechnol., 5, 7-12.
- Attardo, G.M., Benoit J.B., Michalkova V., Yang G., Roller L. and Bohova *et al.* (2012). *Insect Biochemical Molecular Biology*, **42**, 360-370.
- Aukerman, M.J. and Sakai H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. *Plant Cell*, **15**, 2730-2741. doi: 10.1105/tpc.016238.
- Bagga, S., Bracht J., Hunter S., Massirer K., Holtz J., Eachus R. and Pasquinelli A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. *Cell*, **122**, 553-563.
- Bao, N., Lye K.W. and Barton M.K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. *Dev. Cell*, **7**, 653-662. doi: 10.1016/j.devcel.2004. 10.003
- Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*, **116**, 281-297. doi: 10.1016/S0092-8674(04)00045-5.
- Bartel, D.P. and Chen C.Z. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. *Nat. Rev. Genet.* **5**, 396-400.
- Baulcombe, D.C. (2019). How virus resistance provided a mechanistic foundation for RNA silencing. *Plant Cell*, **31(7)**, 1395-1396.

- Baum, J.A., Bogaert T., Clinton W., Heck G.R., Feldmann P. and Ilagan O. *et al.* (2007). *Nature Biotechnology*, **11**, 1322-1326
- Baum, J.A., Bogaert T., Clinton W., Heck G.R., Feldmann P. and Ilagan O. *et al.* (2007). Control of coleopteran insect pests through RNA interference. *Nat. Biotechnol.* **25**, 1322–1326. doi: 10.1038/nbt1359
- Beclin, C., Boutet S., Waterhouse P. and Vaucheret H. (2002). A branched pathway for transgene-induced RNA silencing in plants. *Curr. Biol.* **12**, 684-688. doi: 10.1016/S0960-9822(02)00792-3.
- Bernstein, E., Caudy A.A., Hammond S.M. and Hannon G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. *Nature*, **409**, 363-366. doi: 10.1038/35053110.
- Bolognesi, R., Ramaseshadri P., Anderson J., Bachman P., Clinton W. and Flannagan R. (2012). *PLoS One*, **7**, e47534.
- Bonfim, K., Faria J.C., Nogueira E.O., Mendes E.A. and Aragao F.J. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). *Mol. Plant Microbe Interact.* **20**, 717–726. doi: 10.1094/MPMI-20-6-0717
- Bouche, N., Lauressergues D., Gasciolli V. and Vaucheret H. (2006). An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. *EMBO J.* **25**, 3347-3356. doi: 10.1038/sj.emboj.7601217
- Brodersen, P. and Voinnet O. (2006). *Trends Genet.*, **22**, 268-280
- Brodersen, P., Sakvarelidze-Achard L., Bruun-Rasmussen M., Dunoyer P., Yamamoto Y.Y. and Sieburth L. *et al.* (2008). Widespread translational inhibition by plant miRNAs and siRNAs. *Science*, **320**, 1185-1190. doi: 10.1126/science.1159151
- Brosnan, C.A., Mitter N., Christie M., Smith N.A., Waterhouse P.M. and Carroll B.J. (2007). Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 14741-14746. doi: 10.1073/pnas.0706701104
- Bucher, E., Lohius D., van Poppel P.M., Geerts-Dimitriadou C., Gold-bach R. and Prins M. (2006). Multiple virus resistance at a high frequency using a single transgene construct. *J. Gen. Virol.* **87**, 697-701. doi: 10.1099/vir.0. 82276-0
- Buhtz, A., Springer F., Chappell L., Baulcombe D.C. and Kehr J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. *Plant J.* **53**, 739–749. doi: 10.1111/j.1365-313X.2007.03368.x
- Burgyan, J. and Havelda Z. (2011). Viral suppressors of RNA silencing. *Trends Plant Sci.* **16**, 265-272. doi: 10.1016/j.tplants.2011.02.010
- Burkhart, K.B., Guang S., Buckley B.A., Wong L., Bochner A.F. and Kennedy S. (2011). A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation. *PLoS Genet.* **7**, e1002249. doi: 10.1371/journal. pgen.1002249

- Campo, S., Peris-Peris C., Sire C., Moreno A.B., Donaire L. and Zytnicki M. *et al.* (2013). Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. *New Phytol.* **199**, 212-227. doi: 10.1111/nph.12292
- Carlsbecker, A., Lee J.Y., Roberts C.J., Dettmer J., Lehesranta S. and Zhou J. *et al.* (2010). Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. *Nature*, **465**, 316-321. doi: 10.1038/nature08977
- Challa, N. Balaso G.M. Yankit P. and Bhargav O. (2019). *J. Ento. Zoology Stud.*, **7(3)**, 421-426.
- Chen, F. and Dixon R.A. (2007). Lignin modification improves fermentable sugar yields for biofuel production. *Nat. Biotechnol.* **25**, 759-761. doi: 10.1038/nbt1316
- Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. *Science*, **303**, 2022-2025. doi: 10.1126/science.1088060
- Chuck, G.S., Tobias C., Sun L., Kraemer F., Li C. and Dibble D. *et al.* (2011). Overexpression of the maize corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 17550-17555. doi: 10.1073/pnas.1113971108
- Dalmay, T., Hamilton A., Rudd S., Angell S. and Baulcombe D.C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. *Cell*, **101(5)**, 543-553.
- Dandekar, A.M., Teo G, Defilippi B.G, Uratsu S.L., Passey A.J. and Kader A.A. *et al.* (2004). Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. *Transgenic Res.* **13**, 373-384. doi: 10.1023/B:TRAG0000040037.90435.45
- Darrington, M. Dalmay T. and Morrison N.I. (2017). Chapman, T., *Entomologia Experimentalis*, **164**, 155-175.
- Davuluri, G.R., Tuinen A., Fraser P.D., Manfredonia A., Newman R. and Burgess D. *et al.* (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. *Nat. Biotechnol.* **23**, 890-895. doi: 10.1038/nbt1108
- De Jong, M., Wolters-Arts M., Feron R., Mariani C. and Vriezen W.H. (2009). The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. *Plant J.* **5**, 160-170. doi: 10.1111/j.1365-313X.2008.03671.x
- Denli, A. and Hannon G. (2003). RNAi: an ever-growing puzzle. *Trends Biochem. Sci.* **28**, 196-201. doi: 10.1016/S0968-0004(03)00058-6
- Ding, S.W. (2010). RNA-based antiviral immunity. *Nat. Rev. Immunol.* 10, 632-644. doi: 10.1038/nri2824
- Duan, C.G., Wang C.H. and Guo H.S. (2012) .Silence, 3, 5-12.
- Dunoyer, P., Brosnan C.A., Schott G., Wang Y., Jay F. and Alioua A. *et al.* (2010b). An endogenous, systemic RNAi

- pathway in plants. *EMBO J.* **29**, 1699-1712. doi: 10.1038/emboj.2010.65
- Dunoyer, P., Himber C. and Voinnet O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. *Nat. Genet.* **38**, 258-263. doi: 10.1038/ng1722
- Dunoyer, P., Schott G., Himber C., Meyer D., Takeda A. and Carrington J.C. *et al.* (2010a). Small RNA duplexes function as mobile silencing signals between plant cells. *Science*, **328**, 912-916. doi: 10.1126/science.1185880
- Elbashir, S.M., Lendeckel W. and Tuschl T. (2001). RNA interference is mediated by 21-and 22-nucleotide RNAs. *Genes Dev.* **15**, 188-200. doi: 10.1101/gad.862301
- Eschen-Lippold, L. Landgraf R. and Smolka U. et al. (2012). New Phytol., 193, 985-996.
- Escobar, M.A., Civerolo E.L., Summerfelt K.R. and Dandekar A.M. (2001). RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. *Proc. Natl. Acad. Sci. U.S.A.* **98**, 13437-13442. doi: 10.1073/pnas.241276898
- Fagegaltier, D., Bouge A.L., Berry B., Poisot E., Sismeiro O. and Coppee J.Y. *et al.* (2009). The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 21258-21263. doi: 10.1073/pnas.0809208105
- Fahlgren, N., Howell M.D., Kasschau K.D., Chapman E.J., Sullivan C.M. and Cumbie J.S. *et al.* (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA Genes. *PLoS ONE*, **2**, e219. doi: 10.1371/journal.pone.0000219
- Feldmann K.A. (2006). Steroid regulation improves crop yield. *Nat. Biotechnol.* **24**, 46-47. doi: 10.1038/nbt0106-46
- Fire, A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., and Mello C.C. (1998). Potent and specific genetic inteference by double-stranded RNA in Caenorhabditis elegans. *Nature*, **391**, 806-811. doi: 10.1038/35888.
- Forkmann, G. and Martens S. (2001). Metabolic engineering and applications of flavonoids. *Curr Opin Biotechnol.*, **12**, 155-160.
- Forstemann, K., Horwich M.D. and Wee L. *et al.* (2007). *Cell.*, **130**, 287-297.
- Franco-Zorrilla J.M., Valli A., Todesco M., Mateos I., Puga M. I., RubioSomoza I. *et al.* (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. *Nat. Genet.* **39**, 1033-1037. doi: 10.1038
- Fu, C., Sunkar R., Zhou C., Shen H., Zhang J.Y. and Matts J. et al. (2012). Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol. J., 10, 443-452. doi: 10.1111/j.1467-7652.2011.00677.x
- Fujii, H., Chiou T.J., Lin S.I., Aung K. and Zhu J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. *Curr. Biol.* **15**, 2038-2043. doi: 10.1016/j.cub.2005.10.016
- Fulton, R.W. (1986). Practices and precautions in the use of

- cross protection for plant virus disease control. *Annu. Rev. Phytopathol.* **24**, 67-81.
- Garbutt, J.S., Belles X., Richards E.H. and Reynolds S.E. (2013). *J. Insect Physiology*, **59**, 171-178.
- Gasciolli, V., Mallory A.C., Bartel D.P. and Vaucheret H. (2005). Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. *Curr. Biol.*, **15(16)**, 1494-1500.
- Gheysen, G. and Vanholme B. (2007). RNAi from plants to nematodes. *Trends Biotechnol.* **25**, 89-92. doi: 10.1016/j.tibtech.2007.01.007
- Gilbert, W. (1986). Nature, 319, 618.
- Gilisen, L.J., Bolhaar S.T., Matos C.I., Rouwendal G.J., Boone M.J. and Krens F.A. *et al.* (2005). Silencing of major apple allergen Mal d 1 by using the RNA interference approach. *J. Allergy Clin. Immunol.* 115, 364-369. doi: 10.1016/j.jaci.2004.10.014
- Goetz, M., Hooper L.C., Johnson S.D., Rodrigues J.C., Vivian-Smith A. and Koltunow A.M. (2007). Expression of aberrant forms of auxin response factor8 stimulates parthenocarpy in Arabidopsis and tomato. *Plant Physiol.* **145**, 351-366. doi: 10.1104/pp.107.104174
- Guan, Q., Lu X., Zeng H., Zhang Y. and Zhu J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermo tolerance in Arabidopsis. *Plant J.*, **74**, 840-851. doi: 10.1111/tpj.12169
- Guo, S., Xu Y., Liu H., Mao Z., Zhang C. and Ma Y. *et al.* (2013). The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. *Nat. Comm.* **4**, 1566. doi: 10.1038/ncomms2542
- Hamilton, A.J. and Baulcombe D.C. (1999). A novel species of small antisense RNA in posttranscriptional gene silencing. *Science*, **286**, 950-952. doi: 10.1126/science.286.5441.950
- Hamilton, A., Voinnet O., Chappell L. and Baulcombe D.C. (2002). Two classes of short interfering RNA in RNA silencing. *EMBO J.*, **21**, 4671-4679. doi: 10.1093/emboj/cdf464
- Hammond, S.M., Bernstein E., Beach D. and Hannon G.J. (2000). An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells. *Nature*, **404**, 293-296. doi: 10.1038/35005107
- Han, J., Lee Y., Yeom K.H., Kim Y.K., Jin H. and Kim V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. *Genes Dev.*, **18**, 3016-3027.
- Hannon, G.J. (2002). RNA interference. *Nature*, **418**, 244-251. doi: 10.1038/418244a
- Hannon, G.J. and Rossi J.J. (2004). Unlocking the potential of the human genome with RNA interference. *Nature*, **431**, 371-378.
- Hannon, G.J. (2003). CPL Press., Thatcham.
- Henderson, I.R., Zhang X., Lu C., Johnson L., Meyers B.C. and Green P.J. *et al.* (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene

- silencing and DNA methylation patterning. *Nat. Genet.*, **38**, 721-725. doi: 10.1038/ng1804
- Hewezi, T., Howe P., Maier T.R. and Baum T.J. (2008). Arabidopsis small RNAs and their targets during cyst nematode parasitism. *Mol. Plant Microbe Interact.*, **21**, 1622-1634. doi: 10.1094/MPMI-21-12-1622
- Hily, J.M., Ravelonandro M., Damsteegt V., Basset C., Petri C. and Liu Z. *et al.* (2007). Plum pox virus coat protein gene intron-hair pin-RNA (ihpRNA) constructs provide resistance to Plum pox virus in Nicotiana bethamiana and Prunus domestica. *J. Am. Soc. Hort. Sci.*, **132**, 850-858.
- Hisano, H., Nandakumar R. and Wang Z.Y. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. *Vitro Cell. Dev. Biol. Plant*, 45, 306-313. doi: 10.1007/s11627-009-9219-5
- Hu, Y., Qin F., Huang L., Sun Q., Li C. and Zhao Y. et al. (2009).
 Rice histone deacetylase genes display specific expression patterns and developmental functions.
 Biochem. Biophys. Res. Commun., 388, 266-271. doi: 10.1016/j.bbrc.2009.07.162
- Huntzinger, E. and Izaurralde E. (2011). Gene silencing by micro-RNAs: contributions of translational repression and mRNA decay. *Nat. Rev. Genet.* 12, 99-110. doi: 10.1038/ nrg2936
- Huvenne, H. and Smagghe G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. *J. Insect. Physiol.* **56**, 227-235. doi: 10.1016/j.jinsphys.2009.10.004
- Hwang, E.W., Shin S.J., Yu B.K., Byun M.O. and Kwon H.B. (2011). miR171 family members are involved in drought response in Solanum tuberosum. *J. Plant Biol.*, **54**, 43-48. doi: 10.1007/s12374-010-9141-8
- Ibrahim, H.M., Alkharouf N.W., Meyer S.L., Aly M.A., El-Din A.K. and Hussein E.H. *et al.* (2011). Post-transcriptional gene silencing of rootknot nematode in transformed soybean roots. *Exp. Parasitol.* **127**, 90-99. doi: 10.1016/j.exppara.2010.06.037
- Jagadeeswaran, G, Saini A. and Sunkar R. (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. *Planta*, 229, 1009-1014. doi: 10.1007/s00425-009-0889-3
- Jian, X., Zhang L., Li G, Zhang L., Wang X. and Cao X. et al. (2010). Identification of novel stress-regulated microRNAs from (*Oryza sativa* L.) *Genomics.*, **95**, 47-50. doi: 10.1016/j.ygeno.2009.08.017
- Jiang, C.J., Shimono M., Maeda S., Inoue H., Mori M. and Hasegawa M. *et al.* (2009). Suppression of the rice fattyacid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. *Mol. Plant Microbe Int.*, 22, 820-829. doi: 10.1094/MPMI-22-7-0820
- Jiao, Y., Wang Y., Xue D., Wang J., Yan M. and Liu G. et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet., 42, 541-544. doi: 10.1038/ng.591

- Joga, M.R. Zotti M.J., Smagghe G and Olivier C. (2016). Front Physiol., 7, 553-567.
- Johnson, J. (1937). An acquired partial immunity to tobacco streak disease. *Trans. Wis. Acad. Sci. Arts Lett.* **30**, 27-34.
- Jones-Rhoades, M.W., Bartel D.P. and Bartel B. (2006). MicroRNAs and their regulatory roles in plants. *Annu. Rev. Plant Biol.*, **57**, 19-53. doi: 10.1146/annurev. arplant.57.032905.105218
- Kamachi, S., Mochizuki A., Nishiguchi M. and Tabei Y. (2007). Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. *Plant Cell Rep.* **26**, 1283-1288. doi: 10.1007/s00299-007-0358-z
- Kevin, C. and Nikolaus R. (2007). Nat Rev Genet., 8, 93-103.
- Khraiwesh, B., Arif M.A., Seumel G.I., Ossowski S., Weigel D. and Reski R. *et al.* (2010). Transcriptional control of gene expression by microRNAs. *Cell*, **140**, 111-122. doi: 10.1016/j.cell.2009.12.023
- Khraiwesh, B., Zhu J.K. and Zhu J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. *Biochim. Biophys. Acta*, **1819**, 137-148. doi: 10.1016/j.bbagrm.2011.05.001
- Krubphachaya, P., Jurícek M. and Kertbundit S. (2007). Induction of RNA mediated resistance to papaya ring spot virus type W.J. *Biochem. Mol. Biol.*, **40**, 401-411. doi: 10.5483/BMBRep.2007.40.3.404
- Kumar, P. Pandit S.S. and Baldwin I.T (2012). *PLoS One*, 7, e31347.
- Law, J.A. and Jacobsen S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nat. Rev. Genet.*, **11**, 204-220. doi: 10.1038/nrg2719
- Lee, Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J. and Provost P. *et al.* (2003). The nuclear RNase III Drosha initiates microRNA processing. *Nature*, **425**, 415-419.
- Lee, Y., Hur I., Park S.Y., Kim Y.K., Suh M.R. and Kim V.N. (2006). The role of PACT in the RNA silencing pathway. *EMBO J.*, **25**, 522-5.
- Li, D.H., Liu H., Yang Y.L., Zhen P.P. and Liang J.S. (2009). Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. *Rice Sci.*, **16**, 14-20. doi: 10.1016/S1672-6308(08)60051-7
- Li, K., Yuh-Shuh W., Srinivasa Rao U., Keri W., Yuhong T. and Vatsala V. *et al.* (2008a). Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. *Plant J.*, **56**, 336-349. doi: 10.1111/j.1365-313X.2008.03603.x
- Li, X., Wang X., Zhang S., Liu D., Duan Y. and Dong W. (2012). Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. *PLoS ONE*, **7**, e39650. doi: 10.1371/journal.pone. 0039650
- Liu, H.H., Tian X., Li Y.J., Wu C.A. and Zheng C.C. (2008). Microarraybased analysis of stress-regulated microRNAs in Arabidopsis thaliana. *RNA*, **14**, 836-843. doi: 10.1261/rna.895308

- Liu, J., He Y., Amasino R. and Chen X. (2004). siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. *Genes Dev.*, **18**, 2873-2878. doi: 10.1101/gad.1217304
- Liu, Q., Feng Y. and Zhujun Z. (2009). Funct Integr Genomics. 9, 277-286.
- Llave, C., Kasschau K.D., Rector M.A. and Carrington J.C. (2002a). Endogenous and silencing associated small RNAs in plants. *Plant Cell*, 14, 1605-1619. doi: 10.1105/ tpc.003210
- Lough, T.J. and Lucas W.J. (2006). Integrative plant biology: role of phloem longdistance macromolecular trafficking. *Annu. Rev. Plant Biol.* **57**, 203-232. doi: 10.1146/annurev.arplant.56.032604.144145
- Lv, D.K., Bai X., Li Y., Ding X.D., Ge Y. and Cai H. *et al.* (2010). Profiling of cold-stress-responsive miRNAs in rice by microarrays. *Gene*, **459**, 39-47. doi: 10.1016/j.gene. 2010.03.011
- Mamta, B. and Rajam M.V. (2017). *Physiol Mol Biol Plants*., **23**, 487-501.
- Mao, Y.B., Cai W.J., Wang J.W., Hong G.J., Tao X.Y. and Wang L.J. et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol., 25, 1307-1313. doi: 10.1038/nbt1352
- Mao, Y.B. Cai W.J., Wang J.W., Hong G.J., Tao X.Y. and Wang L.J. et al. (2007). *Nature Biotechnol.*, **25**, 1307-1313.
- McKinney, H.H. (1929). Mosaic disease in the Canary Islands, West Africa, and Gibraltar. *J. Agric. Res.* **39**, 557-78.
- Mello, C.C. and Conte D.J. (2004). Nature, 431, 338-342.
- Melnyk, C.W., Molnar A. and Baulcombe D.C. (2011). Intercellular and systemic movement of RNA silencing. *EMBO J.* **30**, 3553-3563 doi: 10.1038/emboj.2011.274
- Mette, M.F. Aufsatz W. and Vander Widen J. *et al.* (2000). *EMBO J.*, **19**, 5194-5201.
- Miller, S.C., Brown S.J. and Tomoyasu Y. (2008). *Development Genes and Evolution*, **218**, 505-510.
- Missiou, A., Kalantidis K., Boutla A., Tzortzakaki S., Tabler M. and Tsagris M. (2004). Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. *Mol. Breed.* **14**, 185-197. doi: 10.1023/B:MOLB.0000038006.32812.52
- Mitsuda, N. and Ohme-Takagi M. (2009). Functional analysis of transcription factors in Arabidopsis. *Plant Cell Physiol.* **50**, 1232-1248. doi: 10.1093/pcp/pcp075
- Miura, K., Ikeda M., Matsubara A., Song X.J., Ito M. and Asano K. *et al.* (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. *Nat. Genet.* **42**, 545-549. doi: 10.1038/ng.592
- Molesini, B., Pandolfini T., Rotino G.L., Dani V. and Spena A. (2009). Aucsia gene silencing causes parthenocarpic fruit development in tomato. *Plant Physiol.* **149**, 534-548. doi: 10.1104/pp.108.131367
- Molesini, B., Pii Y. and Pandolfini T. (2012). Fruit improvement

- using intragenesis and artificial microRNA. *Trends Biotechnol.* **30**, 80-88. doi: 10.1016/j.tibtech.2011.07.005
- Molnar, A., Melnyk C.W., Bassett A., Hardcastle T.J., Dunn R. and Baulcombe D.C. (2010). Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. *Science*, **328**, 872-875. doi: 10.1126/science.1187959
- Muhammad, T., Zhang F., Zhang Y. and Liang Y. (2019). RNA interference: a natural immune system of plants to counteract biotic stressors. *Cells*, **8**(1), 38.
- Nakamura, N., Fukuchi-Mizutani M., Miyazaki K., Suzuki K. and Tanaka Y. (2006). RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. *Plant Biotechnol*, **23**, 13-18.
- Nakatsuka, T., Abe Y., Kakizaki Y., Yamamura S. and Nishihara M. (2007a). Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. *Plant Cell Rep.*, **26**, 1951-1959
- Nakatsuka, T., Mishibaa K.I., Abe Y., Kubota A., Kakizaki Y., Yamamura S. and Nishihara M. (2008). Plant Biotechnology, Flower color modification of gentian plants by RNAimediated gene silencing. *Plant Biotechnology*, **25**, 61-68.
- Nakatsuka, T., Pitaksutheepong C., Yamamura S. and Nishihara M. (2007b). Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissuespecific activity. *Plant Biotechnol Rep*, 1, 251-257.
- Napoli, C., Lemieux C. and Jorgensen R. (1990). Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. *Plant Cell*, **2**, 279-289.
- Navarro, L., Dunoyer P., Jay F., Arnold B., Dharmasiri N., Estelle M. *et al.* (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science*, **312**, 436-439. doi: 10.1126/science.1126088
- Navarro, L., Dunoyer P., Jay F., Arnold B., Dharmasiri N. and Estelle M. *et al.* (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science*, **312**, 436-439. doi: 10.1126/science.1126088
- Ni, Z., Hu Z., Jiang Q. and Zhang H. (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. *Plant Mol. Biol.* **82**, 113-129. doi: 10.1007/s11103-013-0040-5
- Nishihara, M., Nakatsuka T., Hosokawa K., Yokoi T., Abe Y., Mishiba K. and Yamamura S. (2006). Dominant inheritance of white-flowered and herbicide-resistant traits in transgenic gentian plants. *Plant Biotechol*, **23**, 25-31.
- Nishihara, M., Nakatsuka T. and Yamamura S. (2005). Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. *FEBS Lett.* **579**, 6074-6078.
- Niu, J., Nji C., Taning T., Christiaens O., Smagghe G. and Wang J.J. (2018) *Adv Insect Physiol*, **55**, 1-17.

- Niu, Q.W., Lin S.S., Reyes J.L., Chen K.C., Wu H.W. and Yeh S.D. et al. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420-1428. doi: 10.1038/nbt1255
- Nora, S., MichèLe Z., Asuka I., Biao D., Ming-Bo W., Gabi K. et al. (2009). RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. Plant Pathol. 10, 459-469. doi: 10.1111/j.1364-3703.2009.00546.x
- Nykanen, A. Haley B. and Zamore P.D. (2001). *Cell*, **107**, 309-321.
- Ogita, S. Uefuji H. and Yamaguchi Y. et al. (2003). Nature, 423, 823-833.
- Ossowski, S., Schwab R. and Weigel D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. *Plant J.* **53**, 674-690. doi: 10.1111/j.1365-313X.2007.03328.x
- Palauqui, J.C., Elmayan T., Pollien J.M. and Vaucheret H. (1997). Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. *EMBO J.* **16**, 4738-4745. doi: 10.1093/emboj/16.15.4738
- Pandolfini, T., Molesini B., Avesani L., Spena A. and Polverari A. (2003). Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. *BMC Biotechnol.* 3, 7. doi: 10.1186/1472-6750-3-7
- Pant, B.D., Buhtz A., Kehr J. and Scheible W.R. (2008). MicroRNA399 is a longdistance signal for the regulation of plant phosphate homeostasis. *Plant J.*, **53**, 731-738. doi: 10.1111/j.1365-313X.2007.03363.x
- Park, G.G., Park J.J., Yoon J., Yu S.N. and An G (2010). A Ring finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. *Plant Mol. Biol.* **74**, 467-478. doi: 10.1007/s11103-010-9687-3
- Park, W., Li J., Song R., Messing J. and Chen X. (2002). Carpel factory, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. *Curr. Biol.* 12, 1484-1495. doi: 10.1016/S0960-9822(02)01017-5
- Peltier, A.J., Hatfield R.D. and Grau C.R. (2009). Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. *Plant Dis.* **93**, 149-154. doi: 10.1094/PDIS-93-2-0149
- Pitcher, L.H., Brennan E., Hurley A., Dunsmuir P., Tepperman J.M. and Zilinskas B.A. (1991). Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. *Plant Physiol.* **97**, 452-455. doi: 10.1104/pp.97.1.452
- Pontier, D., Picart C., Roudier F., Garcia D., Lahmy S. and Azevedo J. *et al.* (2012). NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin based pathway in Arabidopsis. *Mol. Cell*, **48**, 121-132. doi: 10.1016/j.molcel.2012.07.027

- Pooggin, M., Shivaprasad P.V., Veluthambi K. and Hohn T. (2003). RNAi targeting of DNA virus in plants. *Nat. Biotechnol.* **21**, 131-132. doi: 10.1038/nbt0203-131b
- Powell-Abel, P., Nelson R.S., De B., Hoffmann N., Rogers S.G. and Fraley R.T. *et al.* (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. *Science*, **232**, 738-743. doi: 10.1126/science.3457472
- Preuss, S. and Pikaard C.S. (2003). DNA Press, Eagleville, 23-36.
- Price, D.R.G and Gatehouse J.A. (2008). RNAi-mediated crop protection against insects. *Trends Biotechnol.* **26**, 393-400. doi: 10.1016/j.tibtech.2008.04.004
- Qiao, F. Yang Q. Wang C.L. Fan Y.L. Wu X.F. and Zhao K.J. (2007). *Euphytica*, **158**, 35-45.
- Qiao, F., Yang Q., Wang C.L., Fan Y.L., Wu X.F. and Zhao K.J. (2007). Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. *Euphytica*, **158**, 35-45. doi: 10.1007/s10681-007-9422-6
- Qu, J., Ye J. and Fang R. (2007). Artificial microRNA-mediated virus resistance in plants. *J. Virol.* **81**, 6690-6699. doi: 10.1128/JVI.02457-06
- Rajput Meenakshi, Khushboo Choudhary, Manish Kumar, Vivekanand V., Aakash Chawade, Rodomiro Ortiz and Nidhi Pareek (2021). RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. *Plants*, **10**, 1914 plants10091914.
- Rajam, M.V., Madhulatha P., Pandey R., Hazarika P.J. and Razdan M.K. (2007). "Applications of genetic engineering in tomato," in Genetic Improvement of Solanaceae Crops: Tomato, Vol. 2, eds M. K. Razdan and A. K. Mattoo (Enfield, NH: Science Publishers), 285-311.
- Rana, T.M. (2007). Nat Rev., 3, 23-36.
- Rangasamy, M. and Siegfried BD. (2012). *Pest Management Science*, **68**, 587-591.
- Ratcliff, F., Harrison B.D. and Baulcombe D.C. (1997). A similarity between viral defense and gene silencing in plants. *Science*, **276**, 1558-60.
- Ratcliff, F.G., MacFarlane S.A. and Baulcombe D.C. (1999). Gene silencing without DNA. RNA-mediated cross protection between viruses. *Plant Cell*, **11**, 1207-16.
- Reddy, M.S.S., Chen F., Shadle G., Jackson L., Aljoe H. and Dixon R.A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (*Medicago sativa* L.). *Proc. Natl. Acad. Sci. U.S.A.* 102, 16573-16578. doi: 10.1073/pnas.0505749102
- Reinhart, B.J., Weinstein E.G., Rhoades M.W., Bartel B. and Bartel D.P. (2002). MicroRNAs in plants. *Genes Dev.* **16**, 1616–1626. doi: 10.1101/gad.1004402
- Reyes, J.L. and Chua N.H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. *Plant J.* **49**, 592-606. doi: 10.1111/j.1365-313X.2006.02980.x
- Rhoades, M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B.

- and Bartel D.P. (2002). Prediction of plant microRNA targets. *Cell*, **110**, 513-520. doi: 10.1016/S0092-8674(02)00863-2
- Ru, P., Xu L., Ma H. and Huang H. (2006). Plant fertility defects induced by the enhanced expression of microRNA167. *Cell Res.* **16**, 457-465. doi: 10.1038/sj.cr.7310057
- Salaman, R.N. (1933). Acquired immunity against the "Y" potato virus. *Nature*, **139**, 924-25.
- Saleh, M.C., Van R.R.P., Hekele A., Gillis A., Foley E. and O'Farrell P.H. et al. (2006). Nature Cell Biology, 8, 793-802.
- Scherer, L.J. and Rossi J.J. (2003). Approaches for the sequence-specific knockdown of mRNA. *Nat. Biotechnol.* **21**, 1457-1465.
- Schijlen, E.G.W.M., de Vos R.C.H., Martens S., Jonker H.H., Rosin F.M. and Molthoff J.W. *et al.* (2007). RNA Interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. *Plant Physiol.* **144**, 1520-1530. doi: 10.1104/pp.107.100305
- Schwab, R., Ossowski S., Riester M., Warthmann M. and Weigel D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. *Plant Cell*, **18**, 1121-1133. doi: 10.1105/tpc.105.039834
- Schwab, R., Palatnik J.F., Riester M., Schommer C., Schmid M. and Weigel D. (2005). Specific effects of microRNAs on the plant transcriptome. *Dev. Cell*, **8**, 517-527. doi: 10.1016/j.devcel.2005.01.018
- Schwach, F., Vaistij F.E., Jones L. and Baulcombe D.C. (2005). An RNA dependent RNA-polymerase prevents meristem invasion by Potato virus X and is required for the activity but not the production of a systemic silencing signal. *Plant Physiol.* **138**, 1842-1852. doi: 10.1104/pp.105.063537
- Shakesby, A.J., Wallace I.S., Isaacs H.V., Pritchard J., Roberts D.M. and Douglas A.E. (2009). *Insect Biochemistry and Molecular Biology*, **39**, 1-10.
- Sharma, V.K., Sanghera G.S., Kashyap P.L., Sharma B.B. and Chandel C. (2013). *African J Biotechnol.*, **12**, 2303-2312.
- Shivaprasad, P.V., Chen H.M., Patel K., Bond D.M., Santos B.A. and Baulcombe D.C. (2012). A microRNA superfamily regulates nucleotide binding site leucine rich repeats and other mRNAs. *Plant Cell*, **24**, 859-874. doi: 10.1105/tpc.111.095380
- Simon-Mateo, C. and García J.A. (2011). Antiviral strategies in plants based on RNA silencing. Biochim. Biophys. *Acta*, **1809**, 722-731. doi: 10.1016/j.bbagrm.2011.05.011
- Sindhu, A.S., Maier T.R., Mitchum M.G., Hussey R.S., Davis E.L. and Baum T.J. (2009). Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. *J. Exp. Bot.* 60, 315-324. doi: 10.1093/jxb/ern289
- Singh, A., Taneja J., Dasgupta I. and Mukherjee S.K. (2014). Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. *Mol. Plant Patholol*. doi: 10.1111/mpp.12229 [Epub ahead of print]

- Slotkin, R.K., Vaughn M., Borges F., Tanurdzic M., Becker J.D. and Feijo J.A. *et al.* (2009). Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. *Cell*, **136**, 461-472. doi: 10.1016/j.cell.2008.12.038
- Smith, N.A., Singh S.P., Wang M.B., Stoutjesdijk P.A., Green A.G. and Waterhouse P.M. (2000). Total silencing by intron-spliced hairpin RNAs. *Nature*, **407**, 319-320. doi: 10.1038/35036500
- Springer, N. (2010). Shaping a better rice plant. *Nat. Genet.* **42**, 475. doi: 10.1038/ng0610-475
- Sun, L., Yuan B. and Zhang M. et al. (2012). J. Exp. Biol., 63, 3097-3108.
- Sunkar, R. and Zhu J.K. (2004). Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. *Plant Cell*, **16**, 2001-2019. doi: 10.1105/tpc.104.022830
- Sunkar, R. and Zhu J.K. (2004). Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. *Plant Cell*, **16**, 2001-2019. doi: 10.1105/tpc.104.022830
- Sunkar, R., Kapoor A. and Zhu J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. *Plant Cell*, **18**, 2051-2065. doi: 10.1105/tpc.106.041673
- Tanaka, Y., Katsumoto Y., Brugliera F. and Mason J. (2005). Genetic engineering in floriculture. *Plant Cell Tiss Org Cult*, 80, 1-24.
- Tanaka, Y., Tsuda S. and Kusumi T. (1998) Metabolic engineering to Modify Flower Color. *Plant Cell Physiol* 39, 1119-1126
- Tang, G, Reinhart B.J., Bartel D.P. and Zamore P.D. (2003). A biochemical framework for RNA silencing in plants. *Genes Dev.* 17, 49-63. doi: 10.1101/gad.1048103
- Tatiparti, K., Sau S., Kashaw S.K. and Iyer A.K. (2017). *Recent Dev Nanomat.*, **7**, 77.
- Teo, G., Suziki Y., Uratsu S.L., Lampien B., Ormonde N. and Hu W.K. *et al.* (2006). Silencing leaf sorbitol synthesis alters long-distance portioning and apple fruit quality. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 18842-18847. doi: 10.1073/pnas.0605873103
- Tepperman, J.M. and Dunsmuir P. (1990). Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. *Plant Mol. Biol.* **14**, 501-511. doi: 10.1007/BF00027496
- Thiebaut, F., Rojas C.A., Almeida K.L., Grativol C., Domiciano G.C. and Lamb C.R. *et al.* (2011). Regulation of miR319 during cold stress in sugarcane. *Plant Cell Environ.* **35**, 502-512. doi: 10.1111/j.1365-3040.2011.02430.x
- Trindade, I., Capitao C., Dalmay T., Fevereiro M.P. and Santos D.M. (2010). miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. *Planta*, **231**, 705-716. doi: 10.1007/s00425-009-1078-0
- Tsuda, S., Fukui Y., Nakamura N., Katsumoto Y., Yonekura-Sakakibara K., Fukuchi-Mizutani M., Ohira K., Ueyama Y., Ohkawa H., Holton T.A., Kusumi T. and Tanaka Y. (2004). Flower color modification of Petunia 83ybrid

- commercial varieties by metabolic engineering. *Plant Biotechnol*, **21**, 377-386
- Tuschl, T. (2001). RNA interference and small interfering RNAs. *Chembiochem*, **2**, 239-145. doi: 10.1002/1439-7633 (20010401)2:43.0.CO;2-R
- Uhlirova, M. Foy B.D., Beaty B.J., Olson K.E., Riddiford L.M. and Jindra M. (2003). *PNAS.*, **100,26**, 15607-15612.
- Vanderschuren, H., Alder A., Zhang P. and Gruissem W. (2009). Dosedependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. *Plant Mol. Biol.* **70**, 265-272. doi: 10.1007/s11103-009-9472-3
- Vaucheret, H. (2008). Plant ARGONAUTES. *Trends Plant Sci.* **13**, 350-358. doi: 10.1016/j.tplants.2008.04.007
- Voinnet, O., Vain P., Angell S. and Baulcombe D.C. (1998). Systemic spread of sequence-specific transgene RNA degradation is initiated by localised introduction of ectopic promoterless DNA. *Cell*, **95**, 177-187. doi: 10.1016/S0092-8674(00)81749-3
- Vu, T.V., Choudhury N.R. and Mukherjee S.K. (2013). Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. *Virus Res.* **172**, 35-45. doi: 10.1016/j.virusres.2012.12.008
- Wang, S., Wu K., Yuan Q., Liu X., Liu Z. and Lin X. et al. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950-954. doi: 10.1038/ng.2327
- Wang, T., Chen L., Zhao M., Tian Q. and Zhang W.H. (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. *BMC Genomics*, **12**, 367-378. doi: 10.1186/1471-2164-12-367
- Wang, T., Chen L., Zhao M., Tian Q. and Zhang W.H. (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. *BMC Genomics* **12**, 367-378. doi: 10.1186/1471-2164-12-367
- Wang, Y., Beaith M., Chalifoux M., Ying J., Uchacz T. and Sarvas C. *et al.* (2009). Shoot-specific down-regulation of protein farnesyltransferase (a-subunit) for yield protection against drought in canola. *Mol. Plant* 2, 191-200. doi: 10.1093/mp/ssn088
- Wang, Y., Beaith M., Chalifoux M., Ying J., Uchacz T. and Sarvas C. *et al.* (2009). Shoot-specific down-regulation of protein farnesyltransferase (a-subunit) for yield protection against drought in canola. *Mol. Plant*, **2**, 191-200. doi: 10.1093/mp/ssn088
- Wang, Y., Ying J., Kuzma M., Chalifoux M., Sample A. and McArthur C. *et al.* (2005). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. *Plant J.* **43**, 413-424. doi: 10.1111/j.1365-313X.2005.02463.x
- Waterhouse, P.M., Wang M.B. and Lough T. (2001). *Nature.*, **411**, 834-842.

- Wesley, S.V., Helliwell C.A., Smith N.A., Wang M.B., Rouse D. T. and Liu Q. *et al.* (2001). Construct design for efficient, effective and high throughput gene silencing in plants. *Plant J.* 27, 581-590. doi: 10.1046/j.1365-313X.2001.01105.x
- Wingard, S.A. (1928). Hosts and symptoms of ringspot, a virus disease of plants. *J. Agric. Res.* **37**, 127-53.
- Wu, K., Camargo C., Fishilevich E., Narva K.E., Chen X. and Taylor C.E. (2017). *PLoS One.*, **12**, e0190208.
- Wu, M.F., Tian Q. and Reed J.W. (2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. *Development*, **133**, 4211-4218. doi: 10.1242/dev.02602
- Xie, K., Shen J., Hou X., Yao J., Li X. and Xiao J. *et al.* (2012). Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. *Plant Physiol.* **158**, 1382-1394. doi: 10.1104/pp.111.190488
- Xie, K., Wu C. and Xiong L. (2006). Genomic organization, differential expression, and interaction of Squamosa promoter-binding- like transcription factors and microRNA156 in rice. *Plant Physiol.* 142, 280-293. doi: 10.1104/pp.106.084475
- Xie, Z., Allen E., Wilken A. and Carrington J.C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 12984-12989. doi: 10.1073/pnas.0506426102
- Xie, Z., Kasschau K.D. and Carrington J.C. (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. *Curr. Biol.* **13**, 784-789. doi: 10.1016/S0960-9822(03)00281-1
- Xin, M., Wang Y., Yao Y., Xie C., Peng H. and Ni Z. *et al.* (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (*Triticum aestivum* L.). *BMC Plant Biol.* **10**, 123-134. doi: 10.1186/1471-2229-10-123
- Xu, J., Wang X.F., Chen P., Liu F.T., Zheng S.C. and Ye H. *et al.* (2016). *Genes.*, **7**, 88.
- Yang, C., Li D., Mao D., Liu X., Li C. and Li X. *et al.* (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (*Oryza sativa* L.). *Plant Cell Environ.* **36**, 2207-2218. doi: 10.1111/pce.12130
- Yara, A., Yaeno T., Hasegawa M., Seto H., Montillet J.L. and Kusumi K. *et al.* (2007). Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of o-3 fatty acid desaturases. *Plant Cell Physiol.* **48**, 1263-1274. doi: 10.1093/pcp/pcm107
- Yoo, B.C., Kragler F., Varkonyi-Gasic E., Haywood V., Archer-Evans S. and Lee Y.M. *et al.* (2004). A systemic small RNA signaling system in plants. *Plant Cell*, **16**, 1979-2000. doi: 10.1105/tpc.104.023614
- Younis, A., Siddique M.I. and Kim C.K. et al. (2014). Int J Biol Sci., 10, 1150-1158.

- Yu, B., Lydiate D.J., Young L.W., Schafer U.A. and Hannoufa A. (2007). Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. *Transgenic Res.* 17, 573-585. doi: 10.1007/s11248-007-9131-x
- Zamore, P.D., Tuschl T., Sharp P.A. and Bartel D.P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell*, **101**, 25-33. doi: 10.1016/S0092-8674(00) 80620-0
- Zamore, P., Tuschl T., Sharp P. and Bartel D. (2000). *Cell.*, **101**, 25-33.
- Zhai, J., Jeong D.H., De Paoli E., Park S., Rosen B.D. and Li Y. *et al.* (2011). MicroRNAs as master regulators of the plant NBLRR defense gene family via the production of phased, trans-acting siRNAs. *Genes Dev.* **25**, 2540-2553. doi: 10.1101/gad.177527.111
- Zhang, X. et al. (2019). Plant Sci, 278, 113-117.
- Zhang, X., Zou Z., Gong P., Zhang J., Ziaf K. and Li H. *et al.* (2011a). Overexpression of microRNA169 confers enhanced drought tolerance to tomato. *Biotechnol. Lett.* **33**, 403-409. doi: 10.1007/s10529-010-0436-0
- Zhang, Y.C., Yu Y., Wang C.Y., Li Z.Y., Liu Q. and Xu J. *et al.* (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. *Nat. Biotechnol.* **31**, 848-852. doi: 10.1038/

- nbt.2646
- Zhao, B.T., Liang R.Q., Ge L.F., Li W., Xiao H.S. and Lin H.X. *et al.* (2007). Identification of drought-induced microRNAs in rice. *Biochem. Biophy. Res. Comm.* **354**, 585-590. doi: 10.1016/j.bbrc.2007.01.022
- Zhou, M., Li D., Li Z., Hu Q., Yang C. and Zhu L. *et al.* (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. *Plant Physiol.* **161**, 1375-1391. doi: 10.1104/pp.112.208702
- Zhou, Y., Yuan Y., Yuan F., Wang M., Zhong H. and Gu M. *et al.* (2012). RNAi-directed down-regulation of RSV results in increased resistance in rice (*Oryza sativa* L.). *Biotechnol. Lett.* **34**, 965-978. doi: 10.1007/s10529-012-0848-0
- Ziebell, H. and Carr J.P. (2010). Cross-protection: a century of mystery. *Adv. Virus Res.* **76**, 211-64.
- Zilberman, D., Cao X. and Jacobsen S.E. (2003). ARGONAUTE4 control of locus specific siRNA accumulation and DNA and histone methylation. *Science*, **299**, 716-719. doi: 10.1126/science.1079695.
- Zrachya, A., Glick E., Levy Y., Arazi T., Citovsky V. and Gafni Y. (2007). Suppressor of RNA silencing encoded by tomato yellow curl virus-Israel. *Virology*, **358**, 159-165. doi: 10.1016/j.virol.2006.08.016.